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Chapter 1

Introduction

The NASA Ames Stereo Pipeline (ASP) is a suite of automated geodesy and stereogrammetry tools designed
for processing planetary imagery captured from orbiting and landed robotic explorers on other planets. It
was designed to process stereo imagery captured by NASA spacecraft and produce cartographic products
including digital elevation models (DEMs), ortho-projected imagery, and 3D models. These data products
are suitable for science analysis, mission planning, and public outreach.

1.1 Background

The Intelligent Robotics Group (IRG) at the NASA Ames Research Center has been developing 3D surface
reconstruction and visualization capabilities for planetary exploration for more than a decade. First demon-
strated during the Mars Pathfinder Mission, the IRG has delivered tools providing these capabilities to the
science operations teams of the Mars Polar Lander (MPL) mission, the Mars Exploration Rover (MER)
mission, the Mars Reconnaissance Orbiter (MRO) mission, and most recently the Lunar Reconnaissance Or-
biter (LRO) mission. A critical component technology enabling this work is the Ames Stereo Pipeline (ASP).
The Stereo Pipeline generates high quality, dense, texture-mapped 3D surface models from stereo image
pairs.

Although initially developed for ground control and scientific visualization applications, the Stereo Pipeline
has evolved in recent years to address orbital stereogrammetry and cartographic applications. In particu-
lar, long-range mission planning requires detailed knowledge of planetary topography, and high resolution
topography is often derived from stereo pairs captured from orbit. Orbital mapping satellites are sent as
precursors to planetary bodies in advance of landers and rovers. They return a wealth of imagery and other
data that helps mission planners and scientists identify areas worthy of more detailed study. Topographic
information often plays a central role in this planning and analysis process.

Our recent development of the Stereo Pipeline coincides with a period of time when NASA orbital mapping
missions are returning orders of magnitude more data than ever before. Data volumes from the Mars and
Lunar Reconnaissance Orbiter missions now measure in the tens of Terabytes. There is growing consensus
that existing processing techniques, which are still extremely human intensive and expensive, are no longer
adequate to address the data processing needs of NASA and the Planetary Science community. To pick an
example of particular relevance, the High Resolution Imaging Science Experiment (HiRISE) instrument has
captured a few thousand stereo pairs. Of these, only about a hundred stereo pairs have been processed to
date; mostly on human-operated, high-end photogrammetric workstations. It is clear that much more value
could be extracted from this valuable raw data if a more streamlined, efficient process could be developed.

The Stereo Pipeline was designed to address this very need. By applying recent advances in robotics and
computer vision, we have created an automated process that is capable of generating high quality DEMs

1
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Figure 1.1: This 3D model was generated from a Mars Orbiter Camera (MOC) image pair M01/00115
and E02/01461 (34.66N, 141.29E). The complete stereo reconstruction process takes approximately thirty
minutes on a 3.0 GHz workstation for input images of this size (1024 × 8064 pixels). This model, shown
here without vertical exaggeration, is roughly 2 km wide in the cross-track dimension.

with minimal human intervention. Users of the Stereo Pipeline can expect to spend some time picking
a handful of settings when they first start processing a new type of imagery, but once this is done the
Stereo Pipeline can be used to process tens, hundreds, or even thousands of stereo pairs without further
adjustment. With the release of this software, we hope to encourage the adoption of this tool chain at
institutions that run and support these remote sensing missions. Over time, we hope to see this tool
incorporated into ground data processing systems alongside other automated image processing pipelines.
As this tool continues to mature, we believe that it will be capable of producing digital elevation models of
exceptional quality without any human intervention.

1.2 Human vs. Computer: When to Choose Automation

When is it appropriate to choose automated stereo mapping over the use of a conventional, human-operated
photogrammetric workstation? This is a philosophical question with an answer that is likely to evolve over
the coming years as automated data processing technologies become more robust and widely adopted. For
now, our opinion is that you should always rely on human-guided, manual data processing techniques for
producing mission critical data products for missions where human lives or considerable capital resources
are at risk. In particular, maps for landing site analysis and precision landing absolutely require the benefit
of an expert human operator to eliminate obvious errors in the DEM; and also to guarantee that the proper
procedures have been followed to correct satellite telemetry errors so that the data have the best possible
geodetic control.

When it comes to using DEMs for scientific analysis, both techniques have their merits. Human-guided
stereo reconstruction produces DEMs of unparalleled quality that benefit from the intuition and experience
of an expert. The process of building and validating these DEMs is well established and accepted in the

2
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scientific community.

However, only a limited number of DEMs can be processed to this level of quality. For the rest, automated
stereo processing can be used to produce DEMs at a fraction of the cost. The results are not necessarily
less accurate than those produced by the human operator, but they will not benefit from the same level of
scrutiny and quality control. As such, users of these DEMs must be able to identify potential issues, and
be on the lookout for errors that may result from the improper use of these tools.

We recommend that all users of the Stereo Pipeline take the time to thoroughly read this documentation
and build an understanding of how stereo reconstruction and bundle adjustment can be best used together
to produce high quality results. Please don’t hesitate to contact us if you have any questions!

1.3 Software Foundations

1.3.1 NASA Vision Workbench

The Stereo Pipeline is built upon the Vision Workbench software which is a general purpose image processing
and computer vision library also developed by the IRG. Some of the tools discussed in this document
are actually Vision Workbench programs, but any distribution of the Stereo Pipeline requires the Vision
Workbench. Unless you’re compiling the Vision Workbench and Stereo Pipeline from source, the distinctions
probably won’t matter to you.

1.3.2 The USGS Integrated Software for Imagers and Spectrometers

This version of the Stereo Pipeline must be installed alongside a copy of United States Geological Survey
(USGS) Integrated Software for Imagers and Spectrometers (ISIS) if you wish to process NASA satellite
imagery. ISIS is widely used in the planetary science community for processing raw spacecraft imagery
into high level data products of scientific interest such as map projected and mosaicked imagery [1, 10, 28].
We chose ISIS because (1) it is widely adopted by the planetary science community, (2) it contains the
authoritative collection of geometric camera models for planetary remote sensing instruments, and (3) it is
open source software that is easy to leverage.

By installing the Stereo Pipeline, you will be adding an advanced stereo image processing capability that
can be used in your existing ISIS work flow. The Stereo Pipeline supports the ISIS “cube” (.cub) file format,
and can make use of the ISIS camera models and ancillary information (i.e. SPICE kernels) for imagers
on many NASA spacecraft. The use of this single standardized set of camera models ensures consistency
between products generated in the Stereo Pipeline and those generated by ISIS. Also by leveraging ISIS
camera models, the Stereo Pipeline can process stereo pairs captured by just about any NASA mission.

As an additional note, the Stereo Pipeline can also process arbitrary, non-ISIS images with accompanying
camera information, but doing so requires a significant amount of extra work and setup. This advanced
use of the software is not covered in this user’s manual, however feel free to contact us if you are interested
in learning more about adapting the pipeline to other stereo data sets.

3
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1.4 Getting Help

All bugs, feature requests, and general discussion should be sent to the Ames Stereo Pipeline user mailing
list:

stereo-pipeline@lists.nasa.gov

To subscribe to this list, send an empty email message with the subject ‘subscribe’ (without the quotes) to:

stereo-pipeline-request@lists.nasa.gov

To contact the lead developers and project manager directly, send mail to:

stereo-pipeline-owner@lists.nasa.gov

1.5 Typographical Conventions

Names of programs that are meant to be run on the command line are written in a constant-width font,
like the stereo program, as are options to those programs.

An indented line of constant-width text can be typed into your terminal, these lines will either begin with
a ‘>’ to denote a regular shell, or with ‘ISIS’ which denotes an ISIS-enabled shell (which means you have
to set the ISISROOT environment variable and sourced the appropriate ISIS 3 Startup script, as detailed in
the ISIS 3 instructions).

> ls

ISIS 3> pds2isis

Italicized constant-width text denotes an option or argument that a user will need to supply. For example,
‘stereo E0201461.map.cub M0100115.map.cub out’ is specific, but ‘stereo left-image right-image
out’ indicates that left-image and right-image are not the names of specific files, but dummy pa-
rameters which need to be replaced with actual file names.

Square brackets denote optional options or values to a command, and items separated by a vertical bar are
either aliases for each other, or different, specific options. Default arguments are prefixed by an equals sign
within parentheses, and line continuation with a backslash:

point2dem [--help|-h] [-r moon|mars] [-s float(=0) ] \
[-o output-filename ] pointcloud -PC.tif

The above indicates a run of the point2dem program. The only argument that it requires is a point cloud
file, which is produced by the stereo program and ends in -PC.tif, although its prefix could be anything
(hence the italics for that part). Everything else is in square brackets indicating that they are optional.

Both --help and -h are really the same thing (both will get you help). Similarly, the argument to the -r
option must be either moon or mars. The -s option takes a floating point value as its argument, and has a
default value of zero. The -o option takes a filename that will be used as the output DEM.

Although there are two lines of constant-width text, the backslash at the end of the first line indicates
that the command continues on the second line. You can either type everything into one long line on your
own terminal, or use the backslash character (or appropriate line continuation character) and a return to
continue typing on a second line in your terminal.
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1.6 Referencing the Ames Stereo Pipeline in your own work

Although no peer-reviewed paper or report yet exists which details the Ames Stereo Pipeline (see the
warning below about this being RESEARCH software), if you do use this software in your work, we’d
appreciate it if you referenced one or more of these abstracts:

Moratto, Z. M., M. J. Broxton, R. A. Beyer, M. Lundy, and K. Husmann. 2010. Ames Stereo Pipeline,
NASA’s Open Source Automated Stereogrammetry Software. Lunar and Planetary Science Confer-

ence 41, abstract #2364. [ADS Abstract].

Broxton, M. J. and L. J. Edwards. 2008. The Ames Stereo Pipeline: Automated 3D Surface Recon-
struction from Orbital Imagery. Lunar and Planetary Science Conference 39, abstract #2419. [ADS
Abstract].

1.7 Warnings to users of the Ames Stereo Pipeline

Ames Stereo Pipeline is a RESEARCH product. There are known bugs and incomplete features. We
reserve the ability to change the API and command line options of the tools we provide. Some of the
documentation is incomplete and some of it may be out of date or incorrect. Although we hope you will
find this release helpful, you use it at your own risk. Please check each release’s NEWS file to see a
summary of our recent changes.

While we are confident that the algorithms used by this software are robust, they have not been systemat-
ically tested or rigorously compared to other methods in the peer-reviewed literature. We have a number
of efforts underway to carefully compare Stereo Pipeline-generated data products to those produced us-
ing established processes, and we will publish those results as they become available. In the meantime,
we strongly recommend that you consult us first before publishing any results based on the
cartographic products produced by this software. You have been warned!
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Installation

2.1 Binary Installation

This is the recommended method. Only the Stereo Pipeline binaries are required. ISIS is required only for
users who wish to process NASA non-terrestrial imagery. A full ISIS installation is no longer required for
operation of Stereo Pipeline programs (only the ISIS data directory is needed), but is required for certain
preprocessing steps before Stereo Pipeline programs are run for planetary data. If you only want to process
terrestrial Digital Globe imagery, skip to section 2.1.2.

Stereo Pipeline Tarball.
The main Stereo Pipeline page is http://irg.arc.nasa.gov/ngt/stereo. Download the Binary

option that matches the platform you wish to use. The recommend, but optional, ISIS version is
listed next to the name; choose the newest version you have available.

USGS ISIS.
The Stereo Pipeline optionally depends on ISIS version 3 from the USGS. For processing planetary
data, processing steps with ISIS programs are needed prior to running Stereo Pipeline. However,
this processing could be done on a completely separate machine. Stereo Pipeline itself uses ISIS
internally, but the Stereo Pipeline binaries now have a self-contained version of ISIS (meaning that
Stereo Pipeline itself doesn’t depend on a particular version of ISIS installed on your computer). So
while the Stereo Pipeline binary programs don’t depend on a local ISIS installation, they will need
access to an ISIS data directory (if working with planetary data).

If you are working with planetary missions, you will need to install ISIS so that you can perform
preprocessing. Their installation guide is at http://isis.astrogeology.usgs.gov/documents/
InstallGuide. You must use their binaries as-is; if you need to recompile, you must follow the
Source Installation guide for the Stereo Pipeline in Section 2.2. Note also that the USGS provides
only the current version of ISIS and the previous version (denoted with a ‘_OLD’ suffix) via their rsync
service. If the current version is newer than the version of ISIS that the Stereo Pipeline is compiled
against, be assured that we’re working on rolling out a new version. However, since Stereo Pipeline
has its own self-contained version of ISIS, as long as there aren’t major differences, you should be
able to use a slightly newer version of ISIS to preprocess your data, and then still get good results
with the Stereo Pipeline binaries. If not, you should be able to sync the previous version of ISIS
which should work with Stereo Pipeline. To do so, view the listing of modules that is provided via
the ‘rsync isisdist.astrogeology.usgs.gov::’ command. You should see several modules listed
with the ‘_OLD’ suffix. Select the one that is appropriate for your system, and rsync according to the
instructions.

9

http://irg.arc.nasa.gov/ngt/stereo
http://isis.astrogeology.usgs.gov/documents/InstallGuide
http://isis.astrogeology.usgs.gov/documents/InstallGuide


Chapter 2

The Stereo Pipeline should be able to work with data from newer versions of ISIS than it was built
against as long as the ISIS cube format hasn’t changed. Running the Stereo Pipeline executables
only requires that you have downloaded the ISIS secondary data and have appropriately set the
ISIS3DATA environment variable. This is normally performed for the user by ISIS’s startup script,
$ISISROOT/scripts/isis3Startup.sh.

2.1.1 Quick Start for ISIS users

Fetch Stereo Pipeline
Download the Stereo Pipeline from http://irg.arc.nasa.gov/ngt/stereo.

Fetch ISIS Binaries
As detailed at http://isis.astrogeology.usgs.gov/documents/InstallGuide.

Fetch ISIS Data
As detailed at http://isis.astrogeology.usgs.gov/documents/InstallGuide.

Untar Stereo Pipeline
tar xzvf StereoPipeline-VERSION-ARCH-OS.tar.gz

Add Stereo Pipeline to Path (optional)
bash: export PATH="/path/to/StereoPipeline /bin:${PATH}"
csh: setenv PATH "/path/to/StereoPipeline /bin:${PATH}"

Set Up ISIS
bash:

export ISISROOT=/path/to/isisroot
source $ISISROOT/scripts/isis3Startup.sh

csh:
setenv ISISROOT /path/to/isisroot
source $ISISROOT/scripts/isis3Startup.csh

Try It Out!
See the next chapter (Chapter 3) for an example.

2.1.2 Quick Start for Digital Globe users

Fetch Stereo Pipeline
Download the Stereo Pipeline from http://irg.arc.nasa.gov/ngt/stereo.

Untar Stereo Pipeline
tar xvfz StereoPipeline-VERSION-ARCH-OS.tar.gz

Try It Out!
This documentation hasn’t been finished yet. However your imagery needs to be converted to the
GeoTIFF format before ASP can read it. ASP doesn’t have native support for NITF that uses an
underlying JPEG2000 compression.
Once converted, the command line arguments to stereo look like the following:
stereo left-image right-image left-xml right-xml output-prefix

The settings discussed in the next chapter (Chapter 3) apply to Digital Globe sessions as well. However
the example requires ISIS to be installed inorder to run. This may or may not be worth your time to
install.
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2.1.3 Common Traps

Here are some errors you might see, and what it could mean. Treat these as templates for problems. In
practice, the error messages might be slightly different.

**I/O ERROR** Unable to open [$ISIS3DATA/Some/Path/Here].
Stereo step 0: Preprocessing failed

You need to set up your ISIS environment or manually set the correct location for ISIS3DATA.

point2mesh E0201461-M0100115-PC.tif E0201461-M0100115-L.tif
[...]
99% Vertices: [************************************************************] Complete!

> size: 82212 vertices
Drawing Triangle Strips
Attaching Texture Data
zsh: bus error point2mesh E0201461-M0100115-PC.tif E0201461-M0100115-L.tif

The source of this problem is an old version of OpenSceneGraph in your library path. Check your
LD_LIBRARY_PATH (for Linux), DYLD_LIBRARY_PATH (for OSX), or your DYLD_FALLBACK_LIBRARY_PATH (for
OSX) to see if you have an old version listed, and remove it from the path if that is the case. It is not
necessary to remove the old versions from your computer, you just need to remove the reference to them
from your library path.
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2.2 Source Installation

This method is for advanced users with moderate build system experience. Some dependencies such as ISIS
and its dependencies (like SuperLU, Qwt, CSpice) use their own custom build systems. Due to the complex
nature of the dependent software, we can’t help you with questions about those libraries.

In order to compile and build your own version of Stereo Pipeline you will need the source code. The binary
distribution that we provide does not provide this. The source code for Stereo Pipeline is available from
Github at https://github.com/NeoGeographyToolkit/StereoPipeline.

2.2.1 Dependency List

This is a list of the prime dependencies of Stereo Pipeline. Some libraries (like ISIS and Vision Workbench
(VW)) have dependencies of their own which are not covered here.
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Figure 2.1: Graph outlining some dependencies. Not all of ISIS’s are shown.

Boost (Required) http://www.boost.org/
Version 1.46 or greater is required. Along with the base library set, the Stereo Pipeline specifically
requires: Program Options, Filesystem, Thread, and Graph.

GDAL (Recommended) http://www.gdal.org
GDAL handles most of the File IO for Ames Stereo Pipeline. It also provides support for the ingestion
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of proj4 strings from the user. This is required if you wish to support the BigTIFF format and write
files larger that 4GB.

ISIS (Recommended) http://isis.astrogeology.usgs.gov/documents/InstallGuide
The USGS Integrated Software for Imagers and Spectrometers (ISIS) library. This library handles
the camera models and image formats used for instruments. ISIS is usually downloaded and used
as a binary distribution. Compilation of ISIS from source can be challenging, and their support
forums may provide assistance: https://isis.astrogeology.usgs.gov/IsisSupport/. Cleaning
and modification of their source code may be required if you would like to use a newer version of
ISIS’s dependencies than may be available on your system.
ISIS is a complex suite of software to build from source, it is not recommended that users try to
build ISIS themselves. Even though ISIS provides pre-compiled libraries, not all of the headers are
included.

LAPACK (Required)
There are many sources for LAPACK. For OSX, you can use the vecLib framework. For Linux,
you can use the netlib LAPACK/CLAPACK distributions, or Intel’s MKL, or any of a number of
others. The math is unfortunately not a hotspot in the code, though, so using a faster LAPACK
implementation will not change much. Therefore, you should probably just use the LAPACK your
package manager (RPM for Red Hat Linux, Yast for SuSE, etc.) has available.

OpenSceneGraph (Optional) http://www.openscenegraph.org/
OpenSceneGraph is required to run the point2mesh tool (See Section A.4). This library provides
a convenient way of building OpenGL graphics through the method of scene graphs. It also pro-
vides a file format and utilities for display these scene graphs. The output file of point2mesh is an
OpenSceneGraph binary scene graph format.

Python 2.4+ (Required) http://www.python.org
Some applications of Stereo Pipeline are python scripts. Python provides a friendly enviroment that
hopefully encourages users to attempt modifications of their own.

Vision Workbench (Required) http://ti.arc.nasa.gov/visionworkbench/
Vision Workbench forms much of the core processing code of the Stereo Pipeline. Vision Workbench
contains almost all of the image processing algorithms, such as image filters, image arithmetic, stereo
correlation, and triangulation. This means that Stereo Pipeline is just a collection of applications
that implement Vision Workbench in the context of ISIS.

2.2.2 Build System

The build system is built on GNU autotools. In-depth information on autotools is available from http:
//sources.redhat.com/autobook/. The basics, however, are simple. To compile the source code, first
run ./configure from the top-level directory. This will search for the dependencies and enable the modules
you requested. There are a number of options that can be passed to configure; many of these options
can also be placed into a config.options file (in the form of VARIABLE="VALUE") in the same directory as
configure. Table 2.2 lists the supported options.
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Variable Name Configure option Default Function

PREFIX --prefix /usr/local Set the install prefix (ex: bina-
ries will go in $PREFIX/bin)

HAVE_PKG_XXX --with-xxx auto
Set to “no” to disable package
XXX, or a path to only search
that path

PKG_PATHS --with-pkg-paths many Prepend to default list of
search paths

ENABLE_PKG_PATHS_DEFAULT --enable-pkg-paths-default yes Append built-in list of search
paths

ENABLE_OPTIMIZE --enable-optimize 3 Level of compiler optimiza-
tion?

ENABLE_DEBUG --enable-debug no How much debug informa-
tion?

ENABLE_CCACHE --enable-ccache no Use ccache if available

ENABLE_RPATH --enable-rpath no Set RPATH on built binaries
and libraries

ENABLE_ARCH_LIBS --enable-arch-libs no
Pass in 64 or 32 to look for
libraries by default in lib64 or
lib32

ENABLE_PROFILE --enable-profile no Use function profiling?

PKG_XXX_CPPFLAGS
Append value to CPPFLAGS
for package XXX

PKG_XXX_LDFLAGS
Prepend value to LDFLAGS
for package XXX

PKG_XXX_LIBS
Override the required libraries
for package XXX

PKG_XXX_MORE_LIBS
Append to required libraries
for package XXX

ENABLE_EXCEPTIONS --enable-exceptions yes Use C++ exceptions? Disable
at own risk.

ENABLE_MULTI_ARCH --enable-multi-arch no
OSX Only: Build Fat binary
with space-separated list of
arches

ENABLE_AS_NEEDED --enable-as-needed no Pass –as-needed to GNU
linker. Use at your own risk.

Table 2.2: Supported configure options
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2.3 Settings Optimization

Finally the last thing to be done for Stereo Pipeline is to setup up Vision Workbench’s render settings.
This step is optional, but for best performance some thought should be applied here.

Vision Workbench is a multithreaded image processing library used by Stero Pipeline. The settings by
which Vision Workbench processes is configurable by having a .vwrc file hidden in your home directory.
Below is an example.

1 # This is an example VW log configuration file. Save
2 # this file to ~/.vwrc to adjust the VW log
3 # settings, even if the program is already running.
4 #
5 # The following integers are associated with the
6 # log levels throughout the Vision Workbench. Use
7 # these in the log rules below.
8 #
9 # ErrorMessage = 0

10 # WarningMessage = 10
11 # InfoMessage = 20
12 # DebugMessage = 30
13 # VerboseDebugMessage = 40
14 # EveryMessage = 100
15 #
16 # You can create a new log file or adjust the settings
17 # for the console log:
18 #
19 # logfile <filename>
20 # - or -
21 # logfile console
22 #
23 # Once you have created a logfile (or selected the
24 # console), you can add log rules using the following
25 # syntax. (Note that you can use wildcard characters
26 # ’*’ to catch all log_levels for a given log_namespace,
27 # or vice versa.)
28 #
29 # <log_level> <log_namespace>
30 #
31 # Example: For the console log, turn on InfoMessage
32 # logging for the thread sub-system and log every
33 # message from the cache sub-system.
34
35 [general]
36 default_num_threads = 16
37 write_pool_size = 40
38 system_cache_size = 1024000000 # ~ 1 GB
39
40 [logfile console]
41 20 = thread
42 * = cache
43 # Below turns off all progress bars to the console.
44 0 = *.progress

There are a lot of possible options that can be implemented in the above example. Let’s cover the most
important options and the concerns the user should have when selecting a value.
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default_num_threads (default=2)
This sets the maximium number of threads that can be used for rendering. When stereo’s subpixel_rfne
is running you’ll probably notice 10 threads are running when you have default_num_threads set
to 8. This is not an error, you are seeing 8 threads being used for rendering, 1 thread for holding
main()’s execution, and finally 1 optional thread acting as the interface to the file driver.
It is usually best to set this parameter equal to the number of processors on your system. Be sure to
include the number of logical processors in your arithmetic if your system supports hyper-threading.
Adding more threads for rasterization increases the memory demands of Stereo Pipeline. If your
system is memory limited, it might be best to lower the default_num_threads option. Remember
that 32 bit systems can only allocate 4 GB of memory per process. Despite Stereo Pipeline being a
multithreaded application, it is still a single process.

write_pool_size (default=21)
The write_pool_size option represents the max waiting pool size of tiles waiting to be written to
disk. Most file formats do not allow tiles to be written arbitrarily out of order. Most however will
let rows of tiles to be written out of order, while tiles inside a row must be written in order. Because
of the previous constraint, after a tile is rasterized it might spend some time waiting in the ‘write
pool’ before it can be written to disk. If the ‘write pool’ fills up, only the next tile in order can be
rasterized. That makes Stereo Pipeline perform like it is only using a single processor.
Increasing the write_pool_size makes Stereo Pipeline more able to use all processing cores in the sys-
tem. Having this value too large can mean excessive use of memory. For 32 bit systems again, they can
run out of memory if this value is too high for the same reason as described for default_num_threads.

system_cache_size (default=805306368)
Accessing a file from the hard drive can be very slow. It is especially bad if an application needs
to make multiple passes over an input file. To increase performance, Vision Workbench will usually
leave an input file stored in memory for quick access. This file storage is known as the ’system cache’
and its max size is dictated by system_cache_size. The default value is 768 MB.
Setting this value too high can cause your application to crash. It is usually recommend to keep this
value around 1/4 of the maximum available memory on the system. For 32 bit systems, this means
don’t set this value any greater than 1 GB. The units of this property is in bytes.

0 = *.progress
This line is not assigning a value to progress, it is however setting the logging level of progress bars.
In the above example, this statement is made under the [logfile console] state. This means that
only progress bars of type ErrorMessage will ever be printed to the console. If you wanted progress
bars up to type InfoMessage, then the line in log file should be changed to:

[logfile console]
20 = *.progress
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Tutorial: Processing Mars Orbiter Camera

Imagery

3.1 Quick Start

The Stereo Pipeline package contains command-line programs that convert a stereo pair in ISIS cube format
into a 3D “point cloud” image: stereo-output -PC.tif. This is an intermediate format that can be passed
along to one of several programs that convert a point cloud into a mesh for 3D viewing or a gridded digital
elevation model for GIS purposes.

There are a number of ways to fine-tune parameters and analyze the results, but ultimately this software
suite takes images and builds models in a mostly automatic way. To create a point cloud file, you simply
pass two image files to the stereo command:

ISIS 3> stereo image_file1 image_file2 stereo-output

You can then make a mesh or a DEM file with the following commands. The stereo-output -PC.tif and
stereo-output -L.tif files are created by the stereo program above:

ISIS 3> point2mesh stereo-output -PC.tif stereo-output -L.tif

ISIS 3> point2dem stereo-output -PC.tif stereo-output -L.tif

3.2 Preparing the Data

The data set that is used in the tutorial and examples below is a pair of Mars Orbital Camera (MOC)
[17, 16] images whose Planetary Data System (PDS) Product IDs are M01/00115 and E02/01461. This
data can be downloaded from the PDS directly, or they can be found in the data/MOC/ directory of your
Stereo Pipeline distribution.

3.2.1 Loading and Calibrating Images using ISIS

These raw PDS images (M0100115.imq and E0201461.imq) need to be imported into the ISIS environment
and radiometrically calibrated. You will need to be in an ISIS environment (have set the ISISROOT envi-
ronment variable and sourced the appropriate ISIS 3 Startup script, as detailed in the ISIS 3 instructions;
we will denote this state with the ‘ISIS 3>’ prompt). Then you can use the mocproc program, like so:
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Figure 3.1:
This figure shows
E0201461.cub and
M0100115.cub open
in ISIS’s qview
program. The view
on the left shows
their full extents
at the same zoom
level, showing how
they have different
ground scales. The
view on the right
shows both images
zoomed in on the
same feature.

ISIS 3> mocproc from= M0100115.imq to= M0100115.cub Mapping= NO
ISIS 3> mocproc from= E0201461.imq to= E0201461.cub Mapping= NO

There are also Ingestion and Calibration parameters whose defaults are ‘YES’ which will bring the image
into the ISIS format and perform radiometric calibration. By setting the Mapping parameter to ‘NO’ the
resultant file will be an ISIS cube file that is calibrated, but not map-projected. Note that while we have
not explicitly run spiceinit, the Ingestion portion of mocproc quietly ran spiceinit for you (you’ll find
the record of it in the ISIS Session Log, usually written out to a file named print.prt). Refer to Figure 3.1
to see the results at this stage of processing.

3.2.2 Aligning Images

The images also need to be rectified (or aligned). There are many ways to do this (see using alignment-method
in stereo’s stereo.default file in section 3.3.1). The most straightforward process is to align the images
by map projecting them in ISIS. This example continues with the files from above, E0201461.cub and
M010015.cub.

This section describes the theory behind doing each of these steps, but we also provide the cam2map4stereo.py
program (page 84) which performs these steps automatically for you.

The ISIS cam2map program will map-project these images:

ISIS 3> cam2map from=M0100115.cub to=M0100115.map.cub
ISIS 3> cam2map from=E0201461.cub to=E0201461.map.cub map=M0100115.map.cub matchmap=true

Notice the order in which the images were run through cam2map. The first projection with M0100115.cub
produced a map-projected image centered on the center of that image. The projection of E0201461.cub
used the map= parameter to indicate that cam2map should use the same map projection parameters as
those of M0100115.map.cub (including center of projection, map extents, map scale, etc.) in creating the
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projected image. By map projecting the image with the worse resolution first, and then matching to that,
we ensure two things: (1) that the second image is summed or scaled down instead of being magnified up,
and (2) that we are minimizing the file sizes to make processing in the Stereo Pipeline more efficient.

Technically, the same end result could be achieved by using the mocproc program alone, and using its map=
M0100115.map.cub option for the run of mocproc on E0201461.cub (it behaves identically to cam2map).
However, this would not allow for determining which of the two images had the worse resolution and
extracting their minimum intersecting bounding box (see below). Furthermore, if you choose to conduct
bundle adjustment (see Chapter 5, page 39) as a pre-processing step, you would do so between mocproc (as
run above) and cam2map.

The above procedure is in the case of two images which cover similar real estate on the ground. If you have
a pair of images where one image has a footprint on the ground that is much larger than the other, only the
area that is common to both (the intersection of their areas) should be kept to perform correlation (since
non-overlapping regions don’t contribute to the stereo solution). If the image with the larger footprint size
also happens to be the image with the better resolution (i.e. the image run through cam2map second with
the map= parameter), then the above cam2map procedure with matchmap=true will take care of it just fine.
Otherwise you’ll need to figure out the latitude and longitude boundaries of the intersection boundary (with
the ISIS camrange program). Then use that smaller boundary as the arguments to the MINLAT, MAXLAT,
MINLON, and MAXLON parameters of the first run of cam2map. So in the above example, after mocproc with
Mapping= NO you’d do this:

ISIS 3> camrange fr= M0100115.cub
[ ... lots of camrange output omitted ... ]

Group = UniversalGroundRange
LatitudeType = Planetocentric
LongitudeDirection = PositiveEast
LongitudeDomain = 360
MinimumLatitude = 34.079818835324
MaximumLatitude = 34.436797628116
MinimumLongitude = 141.50666207418
MaximumLongitude = 141.62534719278

End_Group
[ ... more output of camrange omitted ... ]

ISIS 3> camrange fr= E0201461.cub
[ ... lots of camrange output omitted ... ]

Group = UniversalGroundRange
LatitudeType = Planetocentric
LongitudeDirection = PositiveEast
LongitudeDomain = 360
MinimumLatitude = 34.103893080982
MaximumLatitude = 34.547719435156
MinimumLongitude = 141.48853937384
MaximumLongitude = 141.62919740048

End_Group
[ ... more output of camrange omitted ... ]
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Now compare the boundaries of the two above and determine the intersection to use as the boundaries for
cam2map:

ISIS 3> cam2map from=M0100115.cub to=M0100115.map.cub DEFAULTRANGE= CAMERA \
MINLAT= 34.10 MAXLAT= 34.44 MINLON= 141.50 MAXLON= 141.63

ISIS 3> cam2map from=E0201461.cub to=E0201461.map.cub map=M0100115.map.cub matchmap=true

You only have to do the boundaries explicitly for the first run of cam2map, because the second one uses the
map= parameter to mimic the map projection of the first. These two images aren’t radically different in
areal coverage, so this isn’t really necessary for these images, its just an example.

Again, unless you are doing something complicated, using the cam2map4stereo.py program (page 84) will
take care of all these steps for you.

3.3 Running the Stereo Pipeline

Once the data has been prepared for processing, we invoke the the stereo program (page 77). The stereo
program can generate a number of output files, and you may find it helpful to create a directory to store
the results of stereo processing, as illustrated below.

ISIS 3> ls
E0201461.cub E0201461.map.cub M0100115.cub M0100115.map.cub
ISIS 3> mkdir results

3.3.1 Setting Options in the stereo.default File

The stereo program requires a stereo.default file that contains settings that affect the stereo reconstruc-
tion process. Its contents can be altered for your needs; details are found in appendix B on page 85. You
may find it useful to save multiple versions of the stereo.default file for various processing needs. If you
do this, be sure to specify a configuration file by invoking stereo with the -s option. If this option is not
given, the stereo program will search for a file named stereo.default in the current working directory.
The extension of this file is unimportant. Feel free to use any name that best suits your project.

There is a stereo.map file included with the example data set for MOC that is different from the example
stereo.default.example file distributed with the Stereo Pipeline. The stereo.map included with the
example data has a smaller correlation window (smaller values for the corr-search variables) that is more
suited to that particular MOC stereo image pair.

Alternatively, it is possible to not corr-search in the stereo settings file. If no such options are specified,
stereo will attempt to guess the correct search range. The guess is printed along with the rest of the
program output. If this technique does not produce satisfactory results, then it can at least be used as a
starting point for picking a better search range by hand.

For this example use the stereo.default that is included with the example data set. It has these key
properties:

alignment-method none
corr-search -35 -280 -15 -265
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The first says, ‘Don’t do try to automatically align my images!’ since we have map-projected the images.
The other line defines the range that should be searched by scanning a template from the left image over
the right image. The values above are tuned to the range of offsets that are found in this particular set
of map projected images. The order of the arguments are horizontal minimum index, vertical minimum
index, horizontal maximum index, and finally vertical maximum index.

Given that we map projected the images using the same settings, you may be wondering why there would
still be an offset. The reason is twofold: (1) the camera position may be slightly off, resulting in slight
mis-alignment between stereo images; or (2) ISIS doesn’t have a perfect surface to project onto during map
projection, so small terrain features still produce changes in perspective. (In fact, these are precisely the
features we are hoping to detect!)

Given the uncertainties due to (1) and (2) above, it can be tricky to select a good search
range for the stereo.default file. One way is to let stereo perform one round of auto
search range search. Look at the results using the disparitydebug program. The output
images will clearly show good data or bad data depending on whether the search range is
correct. If the edges of these images look degraded, then the search range may need to be
expanded by hand.

The worst case scenario is to determine search range manually by opening both images
in qview and comparing the coordinates of points that you can match visually. Subtract
line,sample locations in the first image from the coordinates of the same feature in the second
image, this will yield offsets that must be in the search range. Make several of these offset
measurements and use them to define a line,sample bounding box, then expand this by 50%
and use it for corr-search. This will produce good results in most images.

3.3.2 Performing Stereo Correlation

Here is how the stereo program is invoked:

ISIS 3> stereo E0201461.map.cub M0100115.map.cub \
-s stereo.map \
results/E0201461-M0100115

That last option (results/E0201461-M0100115) is a prefix that is used when generating names for stereo
output files. In this case the first part is results/, which causes the program to generate results in that di-
rectory with filenames that start with E0201461-M0100115. If instead that last text was E0201461-M0100115
it would have created a collection of files that start with E0201461-M0100115 in the same directory as the
input files.

All the settings given via the stereo.default file can be over-ridden from the command line. Just add
a double hyphen (--) in front the option’s name and then fill out the option just as you would in the
configuration file. For options in the stereo.default file that take multiple numbers, they must be
separated by spaces (like ‘corr-kernel 25 25’) on the command line. Below is an example of overriding
the search range and subpixel mode from the command line.

ISIS 3> stereo E0201461.map.cub M0100115.map.cub \
-s stereo.map --corr-search -70 -4 40 4 \
--subpixel-mode 0 \
results/E0201461-M0100115
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Figure 3.2: These are the four
viewable .tif files created by the
stereo program. On the left are
the two aligned, pre-processed im-
ages: (E0201461-M0100115-L.tif
and E0201461-M0100115-R.tif).
The next two are mask images
(E0201461-M0100115-lMask.tif and
E0201461-M0100115-rMask.tif), which
indicate which pixels in the aligned images
are good to use in stereo correlation. The
image on the right is the “Good Pixel map”,
(E0201461-M0100115-GoodPixelMap.tif),
which indicates (in gray) which were suc-
cessfully matched with the correlator, and
(in red) those that were not matched.

3.3.3 Diagnosing Problems

Once invoked, stereo proceeds through several stages that are detailed on page 78. Intermediate and final
output files are generated as it goes. See Appendix C, page 91 for a comprehensive listing. Many of these
files are useful for diagnosing and debugging problems. For example, as Figure 3.2 shows, a quick look at
some of the TIFF files in the results/ directory provides some insight into the process.

Perhaps the most important file for assessing the quality of your results is the good pixel image,
(E0201461-M0100115-GoodPixelMap.tif). If this file shows mostly good, gray pixels in the overlap area
(the area that is white in both the E0201461-M0100115-lMask.tif and E0201461-M0100115-rMask.tif
files), then your results are just fine. If the good pixel image shows lots of failed data, signified by red
pixels in the overlap area, then you need to go back and tune your stereo.default file until your results
improve. This might be a good time to make a copy of stereo.default as you tune the parameters to
improve the results.

You should also know that whenever the stereo executable is run, it makes a copy of the configuration file
used in output-prefix -stereo.default. Opening that output file will show when the command was run, what
the flags were from the command line, and then a copy of the stereo.default. This will hopefully help
debug and log what was performed so that others in the future can recreate your work.

Another handy debugging tool is the disparitydebug program, which allows you to generate viewable
versions of the intermediate results from the stereo correlation algorithm. disparitydebug converts infor-
mation in the disparity image files into two TIFF images that contain horizontal and vertical components
of the disparity (i.e. matching offsets for each pixel in the horizontal and vertical directions). There are
actually four flavors of disparity map: the -D.tif, the -RD.tif, the -F-corrected.tif, and -F.tif. You
can run disparitydebug on any of them. Each shows the disparity map at the different stages of processing.

ISIS 3> cd results
ISIS 3> disparitydebug E0201461-M0100115-F.tif

If the output H and V files from disparitydebug look okay, then the point cloud image is most likely ready
for post-processing. You can proceed to make a mesh or a DEM by processing E0201461-M0100115-PC.tif
using the point2mesh or point2dem tools, respectively.
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Tutorial: Processing Mars Orbiter Camera Imagery

Figure 3.3: Disparity images pro-
duced using the disparitydebug tool.
The two images on the left are the
E0201461-M0100115-D-H.tif and
E0201461-M0100115-D-V.tif files,
which are normalized horizontal and
vertical disparity components produced
by the disparity map initialization
phase. The two images on the right
are E0201461-M0100115-F-H.tif and
E0201461-M0100115-F-V.tif, which
are the final filtered, sub-pixel-refined
disparity maps that are fed into the
Triangulation phase to build the point
cloud image. Since these MOC images
were acquired by rolling the spacecraft
across-track, most of the disparity that
represents topography is present in the
horizontal disparity map. The vertical
disparity map shows disparity due to
“wash-boarding,” which is not from to-
pography but from spacecraft movement.
Note however that the horizontal and
vertical disparity images are normalized
independently. Although both have the
same range of gray values from white
to black, they represent significantly
different absolute ranges of disparity.
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3.4 Visualizing the Results

When stereo finishes, it will have produced a point cloud image. At this point, many kinds of data products
can be built from the E0201461-M0100115-PC.tif point cloud file.

3.4.1 Building a 3D Model

If you wish to see the data in an interactive 3D browser, then you can generate a 3D object file using the
point2mesh command (page 81). The resulting file is stored in Open Scene Graph binary format [8]. It can
be viewed with osgviewer (the Open Scene Graph Viewer program, distributed with the binary version of
the Stereo Pipeline). The point2mesh program takes the point cloud file and the left normalized image as
inputs:

ISIS 3> point2mesh E0201461-M0100115-PC.tif E0201461-M0100115-L.tif -l

When the osgviewer program starts, you may want to toggle the lighting with the ‘L’ key, toggle texturing
with the ’T’ key, and toggle wireframe mode with the ’W’. Press ’?’ to see a variety of other interactive
options.

Figure 3.4: The
E0201461-M0100115.ive
file displayed in the OSG
Viewer.

3.4.2 Building a Digital Elevation Model

The point2dem program (page 79) creates a DEM from the point cloud file.

ISIS 3> point2dem E0201461-M0100115-PC.tif

The resulting TIFF file is map projected and will contain georeferencing information stored as GeoTIFF
tags. You can specify a coordinate system (e.g., mercator, sinusoidal) and a reference spheroid (i.e., calcu-
lated for the Moon or Mars).

ISIS 3> point2dem -r mars E0201461-M0100115-PC.tif

This product is suitable for scientific use, and can be imported into a variety of GIS platforms. However,
the resulting file, E0201461-M0100115-DEM.tif, will have 32-bit floating point pixels, and will not render
well in typical image viewers.

The point2dem program can also be used to orthoproject raw satellite imagery onto the DEM. To do this,
invoke point2dem just as before, but add the --orthoimage option and specify the use of the left image
file as the texture file to use for the projection:
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Tutorial: Processing Mars Orbiter Camera Imagery

Figure 3.5: The image on the
left is a normalized DEM (gen-
erated using the -n option),
which shows low terrain values
as black and high terrain val-
ues as white. The image on
the right is the left input image
projected onto the DEM (cre-
ated using the --orthoimage
option to point2dem).

ISIS 3> point2dem -r mars --orthoimage E0201461-M0100115-L.tif \
E0201461-M0100115-PC.tif

The point2dem program is also able to accept output projection options the same way as the popular
tools in GDAL. Well known EPSG, IAU2000 projections, and custom Proj4 strings can applied with the
target spatial reference set flag, --t_srs. If the target spatial reference flag is applied with any of the
reference spheroid options, the reference spheroid option will overwrite the datum defined in the target
spatial reference set. The following examples produce the same output.

ISIS 3> point2dem --t_srs IAU2000:49900 E0201461-M0100115-PC.tif
ISIS 3> point2dem --t_srs "+proj=longlat +a=3396190 +b=3376200"

E0201461-M0100115-PC.tif

The point2dem program can be used in many different ways. Be sure to take your time to explore all of
the options.
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3.4.3 Generating Color Hillshade Maps

Once you have generated a DEM file, you can use the Vision Workbench’s colormap and hillshade tools
to create colorized and/or shaded relief images.

To create a colorized version of the DEM, you need only specify the DEM file to use. The colormap is
applied to the full range of the DEM, which is computed automatically. Alternatively you can specific your
own min and max range for the color map.

ISIS 3> colormap E0201461-M0100115-DEM.tif -o hrad-colorized.tif

To create a hillshade of the DEM, specify the DEM file to use. You can control the azimuth and elevation
of the light source using the -a and -e options.

ISIS 3> hillshade E0201461-M0100115-DEM.tif -o hrad-shaded.tif -e 25

To create a colorized version of the shaded relief file, specify the DEM and the shaded relief file that should
be used:

ISIS 3> colormap E0201461-M0100115-DEM.tif -s hrad-shaded.tif -o hrad-color-shaded.tif

Figure 3.6: The colorized DEM, the shaded relief image, and the colorized hillshade.
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3.4.4 Building Overlays for Moon and Mars mode in Google Earth

The final program in the Stereo Pipeline package that this tutorial will address is image2qtree. This tool
was designed to create tiled, multi-resolution overlays for Google Earth. In addition to generating image
tiles, it produces a metadata tree in KML format that can be loaded from your local hard drive or streamed
from a remote server over the Internet.

The image2qtree program can only be used on 8-bit image files with georeferencing information (e.g.
grayscale or RGB geotiff images). In this example, it can be used to process
E0201461-M0100115-DEM-normalized.tif, E0201461-M0100115-DRG.tif hrad-shaded.tif,
hrad-colorized.tif, and hrad-shaded-colorized.tif

ISIS 3> image2qtree hrad-shaded-colorized.tif -m kml --draw-order 100

Figure 3.7: The colorized hillshade DEM as a KML overlay.
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Part II

The Stereo Pipeline in Depth
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Chapter 4

Correlation

In this chapter we will dive much deeper into understanding the core algorithms in the Stereo Pipeline. We
start with an overview of the five stages of stereo reconstruction. Then we move into an in-depth discussion
and exposition of the various correlation algorithms.

The goal of this chapter is to build an intuition for the stereo correlation process. This will help users to
identify unusual results in their DEMs and hopefully eliminate them by tuning various parameters in the
stereo.default file. For scientists and engineers who are using DEMs produced with the Stereo Pipeline,
this chapter may help to answer the question, “What is the Stereo Pipeline doing to the raw data to produce
this DEM?”

A related question that is commonly asked is, “How accurate is a DEM produced by the Stereo Pipeline?”
This chapter does not yet address matters of accuracy and error, however we have several efforts underway
to quantify the accuracy of Stereo Pipeline-derived DEMs, and will be publishing more information about
that shortly. Stay tuned.

The entire stereo correlation process, from raw input images to a point cloud or DEM, can be viewed as a
multistage pipeline as depicted in Figure 4.1, and detailed in the following sections.

4.1 Pre-processing

The first optional (but recommended) step in the process is least squares Bundle Adjustment, which is
described in detail in Chapter 5.

Next, the left and right images are roughly aligned using one of three methods: (1) a homography transform
of the right image based on automated tie-point measurements, (2) a 3D rotation that achieves epipolar
rectification (only implemented for Pinhole sessions for missions like MER or K10) or (3) map projection
of both the left and right images using the ISIS cam2map command or through gdal_translate for Digital
Globe and GeoEye images. The first two options can be applied automatically by the stereo pipeline when
the alignment-method variable in the stereo.default file is set to HOMOGRAPHY or EPIPOLAR.

The latter option, running cam2map, cam2map4stereo.py, or gdal_translate must be carried out by the
user prior to invoking the stereo command. Map projecting the images using ISIS eliminates any unusual
distortion in the image due to the unusual camera acquisition modes (e.g. pitching “ROTO” maneuvers
during image acquisition for MOC, or highly elliptical orbits and changing line exposure times for the High
Resolution Stereo Camera, HRSC). It also eliminates some of the perspective differences in the image pair
that are due to large terrain features by taking the existing low-res terrain model into account (e.g. the
Mars Orbiter Laser Altimeter, MOLA; Lunar Orbiter Laser Altimeter, LOLA; National Elevation Dataset,
NED; or Unified Lunar Coordinate Network, ULCN, 2005 models).
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Figure 4.1: Flow of data through the Stereo Pipeline.

In essence, map projecting the images results in a pair of very closely matched images that are as close to
ideal as possible given existing information. This leaves only small perspective differences in the images,
which are exactly the features that the stereo correlation process is designed to detect.

For this reason, we recommend map projection for pre-alignment of most stereo pairs. Its only cost is
longer triangulation times as more math must be applied to work back through the transforms applied to
the images. In either case, the pre-alignment step is essential for performance because it ensures that the
disparity search space is bounded to a known area. In both cases, the effects of pre-alignment are taken
into account later in the process during Triangulation, so you do not need to worry that pre-alignment will
compromise the geometric integrity of your DEM.

In some cases the pre-processing step may also normalize the pixel values in the left and right images to
bring them into the same dynamic range. Various options in the stereo.default file affect whether or how
normalization is carried out, including individual-normalize and force-use-entire-range. Although
the defaults work in most cases, the use of these normalization steps can vary from data set to data set, so
we recommend you refer to the examples in Chapter 6 to see if these are necessary in your use case.

Finally, pre-processing can perform some filtering of the input images (as determined by
prefilter-mode) to reduce noise and extract edges in the images. When active, these filters apply a kernel
with a sigma of prefilter-kernel-width pixels that can improve results for noisy images (prefilter-mode
must be chosen carefully in conjunction with cost-mode, see Appendix B). The pre-processing modes that
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extract image edges are useful for stereo pairs that do not have the same lighting conditions, contrast, and
absolute brightness [23]. We recommend that you use the defaults for these parameters to start with, and
then experiment only if your results are sub-optimal.

4.2 Disparity Map Initialization

Correlation is the process at the heart of the Stereo Pipeline. It is a collection of algorithms that compute
correspondences between pixels in the left image and pixels in the right image. The map of these corre-
spondences is called a disparity map. You can think of a disparity map as an image whose pixel locations
correspond to the pixel (u, v) in the left image, and whose pixel values contain the horizontal and vertical
offsets (du, dv) to the matching pixel in the right image, which is (u+ du, v + dv).

The correlation process attempts to find a match for every pixel in the left image. The only pixels skipped
are those marked invalid in the mask images. For large images (e.g. from HiRISE, Lunar Reconnaissance
Orbiter Camera, LROC, or WorldView), this is very expensive computationally, so the correlation process
is split into two stages. The disparity map initialization step computes approximate correspondences using
a pyramid-based search that is highly optimized for speed, but trades resolution for speed. The results of
disparity map initialization are integer-valued disparity estimates. The sub-pixel refinement step takes these
integer estimates as initial conditions for an iterative optimization and refines them using the algorithm
discussed in the next section.

We employ several optimizations to accelerate disparity map initialization: (1) a box filter-like accumulator
that reduces duplicate operations during correlation [25]; (2) a coarse-to-fine pyramid based approach where
disparities are estimated using low resolution images, and then successively refined at higher resolutions;
and (3) partitioning of the disparity search space into rectangular sub-regions with similar values of disparity
determined in the previous lower resolution level of the pyramid [25].

Naive correlation itself is carried out by moving a small, rectangular template window from the from left
image over the specified search region of the right image, as in Figure 4.2. The “best” match is determined
by applying a cost function that compares the two windows. The location at which the window evaluates to
the lowest cost compared to all the other search locations is reported as the disparity value. The cost-mode
variable allows you to choose one of three cost functions, though we recommend normalized cross correlation
[18], since it is most robust to slight lighting and contrast variations between a pair of images. Try the
others if you need more speed at the cost of quality.

Our implementation of pyramid correlation is a little unique in that it is actually split into two levels
of pyramid searching. There is a output_prefix -D_sub.tif disparity image that is computed from the
greatly reduced input images *-L_sub.tif and output_prefix -R_sub.tif. Those “sub” images have their
size chosen so that their area is around 2.25 mega pixels, a size that is easily viewed on the screen unlike
the raw source imagery. The low resolution disparity image then defines the per thread search range of the
higher resolution disparity, output_prefix -D.tif.

This solution is imperfect but comes from our model of multithreaded processing. ASP processes individual
tiles of the output disparity in parallel. The smaller the tiles, the easier it is to distribute evenly among
the CPU cores. The size of the tile unfortunately limits the max number of pyramid levels we can process.
We’ve struck a balance where every 1024 by 1024 pixel area is processed individually in a tile. This practice
allows only 5 levels of pyramid processing. With the addition of the second tier of pyramid searching with
output_prefix -D_sub.tif, we are allowed to process beyond that limitation.

Finally, this might go with out saying, but any colossal failure in the low resolution disparity image will
be detrimental to the performance of the higher resolution disparity. In the event that the low resolution
disparity is completely unhelpful, it can be skipped by adding corr-seed-mode 0 in the stereo.default
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Figure 4.2: The correlation algorithm in disparity map initialization uses a sliding template window from
the left image to find the best match in the right image. The size of the template window can be adjusted
using the H_KERN and V_KERN parameters in the stereo.default file, and the search range can be adjusted
using the {H,V}_CORR_{MIN/MAX} parameters.

file. This should only be considered in cases where the texture in an image is completely lost when
subsampled. An example would be satellite imagery of fresh snow in the arctic.

4.2.1 Debugging Disparity Map Initialization

Never will all pixels be successfully matched during stereo matching. Though a good chunk of the image
should be correctly processed. If you see large areas where matching failed, this could be due to a variety
of reasons:

• In regions where the images do not overlap, there should be no valid matches in the disparity map.

• Match quality may be poor in regions of the images that have different lighting conditions, contrast,
or specular properties of the surface.

• Areas that have image content with very little texture or extremely low contrast may have an insuf-
ficient signal to noise ratio, and will be rejected by the correlator.

• Areas that are highly distorted due to different image perspective, such as crater and canyon walls,
may exhibit poor matching performance. This could also be due to failure of the preprocessing step
in aligning the images. The correlator can not match images that are rotated differently from each
other or have different scale/resolution.
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Bad matches, often called “blunders” or “artifacts” are also common, and can happen for many of the same
reasons listed above. The Stereo Pipeline does its best to automatically detect and eliminate these blunders,
but the effectiveness of these outlier rejection strategies does vary depending on the quality of the input
imagery.

When tuning up your stereo.default file, you will find that it is very helpful to look at the raw output of
the disparity map initialization step. This can be done using the disparitydebug tool, which converts the
output_prefix -D.tif file into a pair of normal images that contain the horizontal and vertical components
of disparity. You can open these in a standard image viewing application and see immediately which pixels
were matched successfully, and which were not. Stereo matching blunders are usually also obvious when
inspecting these images. With a good intuition for the effects of various stereo.default parameters and
a good intuition for reading the output of disparitydebug, it is possible to quickly identify and address
most problems.

4.3 Sub-pixel Refinement

Once disparity map initialization is complete, every pixel in the disparity map will either have an estimated
disparity value, or it will be marked as invalid. All valid pixels are then adjusted in the sub-pixel refinement
stage based on the subpixel-mode setting.

The first mode is parabola-fitting sub-pixel refinement (subpixel-mode 1). This technique fits a 2D
parabola to points on the correlation cost surface in an 8-connected neighborhood around the cost value
that was the “best” as measured during disparity map initialization. The parabola’s minimum can then be
computed analytically and taken as as the new sub-pixel disparity value.

This method is easy to implement and extremely fast to compute, but it exhibits a problem known as pixel-
locking: the sub-pixel disparities tend toward their integer estimates and can create noticeable “stair steps”
on surfaces that should be smooth [24, 26]. See e.g. Figure 4.3(b). Furthermore, the parabola subpixel
mode is not capable of refining a disparity estimate by more than one pixel, so although it produces smooth
disparity maps, these results are not much more accurate than the results that come out of the disparity
map initialization in the first place. However, the speed of this method makes it very useful as a “draft”
mode for quickly generating a DEM for visualization (i.e. non-scientific) purposes. It is also beneficial in
the event that a user will simply downsample their DEM after generation in Stereo Pipeline.

For high quality results, we recommend subpixel-mode 2: the Bayes EM weighted affine adaptive window
correlator. This advanced method produces extremely high quality stereo matches that exhibit a high
degree of immunity to image noise. For example Apollo Metric Camera images are affected by two types of
noise inherent to the scanning process: (1) the presence of film grain and (2) dust and lint particles present
on the film or scanner. The former gives rise to noise in the DEM values that wash out real features, and
the latter causes incorrect matches or hard to detect blemishes in the DEM. Attenuating the effect of these
scanning artifacts while simultaneously refining the integer disparity map to sub-pixel accuracy has become
a critical goal of our system, and is necessary for processing real-world data sets such as the Apollo Metric
Camera data.

The Bayes EM subpixel correlator also features a deformable template window from the left image that
can be rotated, scaled, and translated as it zeros in on the correct match in the right image. This adaptive
window is essential for computing accurate matches on crater or canyon walls, and on other areas with
significant perspective distortion due to foreshortening.

This affine-adaptive behavior is based on the Lucas-Kanade template tracking algorithm, a classic algorithm
in the field of computer vision [3]. We have extended this technique; developing a Bayesian model that
treats the Lucas-Kanade parameters as random variables in an Expectation Maximization (EM) framework.
This statistical model also includes a Gaussian mixture component to model image noise that is the basis
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(a) Left Image (b) Parabola Subpixel Mode (c) Bayes EM Subpixel Mode

(d) Right Image (e) Parabola Hillshade (f) Bayes EM Hillshade

Figure 4.3: Left: Input images. Center: results using the parabola draft subpixel mode (subpixel-mode =
1). Right: results using the Bayes EM high quality subpixel mode (subpixel-mode = 2).

for the robustness of our algorithm. We will not go into depth on our approach here, but we encourage
interested readers to read our papers on the topic [22, 5].

However we do note that, like the computations in the disparity map initialization stage, we adopt a multi-
scale approach for sub-pixel refinement. At each level of the pyramid, the algorithm is initialized with the
disparity determined in the previous lower resolution level of the pyramid, thereby allowing the subpixel
algorithm to shift the results of the disparity initialization stage by many pixels if a better match can
be found using the affine, noise-adapted window. Hence, this sub-pixel algorithm is able to significantly
improve upon the results to yield a high quality, high resolution result.

4.4 Triangulation

When running an ISIS session, the Stereo Pipeline uses geometric camera models available in ISIS [2].
These highly accurate models are customized for each instrument that ISIS supports. Each ISIS “cube”
file contains all of the information that is required by the Stereo Pipeline to find and use the appropriate
camera model for that observation.

Other sessions such as DG (Digital Globe) or Pinhole, require that their camera model be provided as
additional arguments to the stereo command. Those camera models come in the form of an XML document
for DG and as *.pinhole, *.tsai, *.cahv, *.cahvor for Pinhole sessions. Those files must be the third
and forth arguments or immediately follow after the 2 input images for stereo.
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Figure 4.4: Most remote sensing cameras fall into two generic categories based on their basic geometry.
Framing cameras (left) capture an instantaneous two-dimensional image. Linescan cameras (right) capture
images one scan line at a time, building up an image over the course of several seconds as the satellite
moves through the sky.

Figure 4.5: Once a disparity map has been generated and refined, it can be used in combination with the
geometric camera models to compute the locations of 3D points on the surface of Mars. This figure shows
the position (at the origins of the red, green, and blue vectors) and orientation of the Mars Global Surveyor
at two points in time where it captured images in a stereo pair.

ISIS camera models account for all aspects of camera geometry, including both intrinsic (i.e. focal length,
pixel size, and lens distortion) and extrinsic (e.g. camera position and orientation) camera parameters.
Taken together, these parameters are sufficient to “forward project” a 3D point in the world onto the image
plane of the sensor. It is also possible to “back project” from the camera’s center of projection through a
pixel corresponding to the original 3D point.

Notice, however, that forward and back projection are not symmetric operations. One camera is sufficient
to “image” a 3D point onto a pixel located on the image plane, but the reverse is not true. Given only a
single camera and a pixel location x = (u, v) that is the image of an unknown 3D point P = (x, y, z), it is
only possible to determine that P lies somewhere along a ray that emanates from the camera’s center of
projection through the pixel location x on the image plane (see Figure 4.4).

Alas, once images are captured, the route from image pixel back to 3D points in the real world is through
back projection, so we must bring more information to bear on the problem of uniquely reconstructing our
3D point. In order to determine P using back projection, we need two cameras that both contain pixel
locations x1 and x2 where P was imaged. Now, we have two rays that converge on a point in 3D space (see
Figure 4.5). The location where they meet must be the original location of P .

37



Chapter 4

In practice, the two rays rarely intersect perfectly because any slight error in the camera position or pointing
information will effect the rays’ positions as well. Instead, we take the closest point of intersection of the
two rays as the location of point P .

Additionally, the actual distance between the rays at this point is an interesting and important error metric
that measures how self-consistent our two camera models are for this point. You will learn in the next
chapter that this information, when computed and averaged over all reconstructed 3D points, can be a
valuable statistic for determining whether to carry out bundle adjustment. Distance between the two rays
at their closest intersection is recorded in the fourth channel of the point cloud file, output-prefix -PC.tif.
This information can be brought to the same perspective as the output DEM by using the --error argument
on the point2dem command.

This error in the triangulation, the distance between two rays, is not the true accuracy of the DEM. It is
only another indirect measure of quality. A DEM with high triangulation error is always bad and should
have its images bundle adjusted. A DEM with low triangulation error is at least self consistent but could
still be bad. A map of the triangulation error should only be interpreted as a relative measurement. Where
small areas are found with high triangulation error came from correlation mistakes and large areas of error
came from camera model inadequacies.
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Bundle Adjustment

Satellite position and orientation errors have a direct effect on the accuracy of digital elevation models
produced by the Stereo Pipeline. If they’re not corrected, these uncertainties will result in systematic
errors in the overall position and slope of the DEM. Severe distortions can occur as well, resulting in
twisted or “taco shaped” DEMs, though in most cases these effects are quite subtle and hard to detect. In
the worse case, such as with old mission data like Voyager or Apollo, these gross camera misalignments can
prohibit Stereo Pipeline’s internal interest point matcher and block auto search range detection.

USGS’s ISIS software contains a suite of tools for correcting camera position and orientation errors for
their cameras using a process called bundle adjustment. Bundle adjustment is the process of simultaneously
adjusting the properties of many cameras and the 3D locations of the objects they see in order to minimize
the error between the estimated, back-projected pixel location of the 3D objects and their actual measured
location in the captured images.

That complex process can be boiled down to this simple idea: bundle adjustment ensures that observations
in multiple different images of a single ground feature are self-consistent. If they are not consistent, then
the position and orientation of the cameras as well as the 3D position of the feature must be adjusted until
they are. This optimization is carried out along with thousands (or more) of similar constraints involving
many different features observed in other images. Bundle adjustment is very powerful and versatile: it can
operate on just two overlapping images, or on thousands. It is also a dangerous tool. Careful consideration
is required to insure and verify that the solution does represent reality.

Figure 5.1: Bundle adjustment is illustrated here using a color-mapped, hill-shaded DEM mosaic from
Apollo 15, Orbit 33, imagery. (a) Prior to bundle adjustment, large discontinuities can exist between
overlapping DEMs made from different images. (b) After bundle adjustment, DEM alignment errors are
minimized, and no longer visible.
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Bundle adjustment can also take advantage of ground control points (GCPs), which are 3D locations of
features that are known apriori (often by measuring them by hand in another existing DEM). GCPs can
improve the internal consistency of your DEM or align your DEM to an existing data product. Finally,
even though bundle adjustment calculates the locations of the 3D objects it views, only the final properties
of the cameras are recorded for use by the Ames Stereo Pipeline. Those properties can be loaded into the
stereo program which uses its own method for triangulating 3D feature locations.

When using the Stereo Pipeline, bundle adjustment is an optional step between the capture of images
and the creation of DEMs. The bundle adjustment process described below should be completed prior to
running the stereo command.

Although bundle adjustment is not a required step for generating DEMs, it is highly recommended for users
who plan to create DEMs for scientific analysis and publication. Incorporating bundle adjustment into the
stereo work flow not only results in DEMs that are more internally consistent, it is also the correct way to
co-register your DEMs with other existing data sets and geodetic control networks.

At the moment however, Bundle Adjustment does not automatically work against outside DEMs from
sources such as laser altimeters. Hand picked GCPs are the only way for ASP to register to those types of
sources.

5.0.1 A deeper understanding

In bundle adjustment the position and orientation of each camera station are determined jointly with the
3D position of a set of image tie-points points chosen in the overlapping regions between images. Tie points,
like they sound, tie individual camera images together. Their physical manifestation would be a rock or
small crater than can be observed across multiple images.

Tie-points can be automatically extracted using Vision Workbench’s Interest Point module, ISIS’s autoseed
and pointreg, or through a number of outside methods such as the famous SURF[4]. We’ll be discussing
the method of gathering these measurements using ISIS’s toolchain. Creating a collection of tie points,
called a control network, is a three step process. First, a general geographic layout of the points must
be decided upon. This is traditionally just a grid layout that has some spacing that allows for about a
20-30 measurements to be made per image. This decided upon grid shows up in slightly different projected
locations each image due to their slight misalignments. The second step is have an automatic registration
algorithm try to find the same feature in all images using the prior grid as a starting location. The third
step is to manually verify all measurements visually, checking to insure that each measurement is looking
at the same feature.

Bundle Adjustment in ISIS is performed with the jigsaw executable. It generally follows the method
described in [27] and determines the best camera parameters that minimize the projection error given by
� =

�
k

�
j(Ik − I(Cj , Xk))2 where Ik are the tie points on the image plane, Cj are the camera parameters,

and Xk are the 3D positions associated with features Ik. I(Cj , Xk) is an image formation model (i.e. forward
projection) for a given camera and 3D point. To recap, it projects the 3D point, Xk, into the camera with
parameters Cj . This produces a predicted image location for the 3D point that is compared against the
observed location, Ik. It then reduces this error with the Levenberg-Marquardt algorithm (LMA). Speed
is improved by using sparse methods as described in Hartley and Zisserman [13], Konolige [14], and Chen
et al. [7].

Even though the arithmetic for bundle adjustment sounds clever, there are faults with the base implemen-
tation. Imagine a case where all cameras and 3D points were collapsed into a single point. If you evaluate
the above cost function, you’ll find that the error is indeed zero. This is not the correct solution if the
images were taken from orbit. Another example is if a translation was applied equally to all 3D points
and camera locations. This again would not affect the cost function. This fault comes from bundle adjust-
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ment’s inability to control the scale and translation of the solution. It will correct the geometric shape of
the problem, yet it cannot guarantee that the solution will have correct scale and translation.

ISIS attempts to fix this problem by adding two additional cost functions to bundle adjustment. First of
which is � =

�
j(C

initial
j − Cj)2. This constrains camera parameters to stay relatively close to their initial

values. Second, a small handful of 3D ground control points can be chosen by hand and added to the error
metric as � =

�
k(X

gcp
k − Xk)2 to constrain these points to known locations in the planetary coordinate

frame. A physical example of a ground control point could be the location of a lander that has a well known
location. GCP could also be hand picked points against a highly regarded and prior existing map such as
the THEMIS Global Mosaic or the LRO-WAC Global Mosaic.

Like other iterative optimization methods, there are several conditions that will cause bundle adjustment
to terminate. When updates to parameters become insignificantly small or when the error, �, becomes
insignificantly small, then the algorithm has converged and the result is most likely as good as it will get.
However, the algorithm will also terminate when the number of iterations becomes too large, in which case
bundle adjustment may or may not have finished refining the parameters of the cameras.

5.1 Performing bundle adjustment with USGS’s ISIS

Ames Stereo Pipeline at one point provided its own bundle adjustment utilities but at this point it is of
our opinion that they not be used for general use. USGS’s ISIS bundle adjustment software has improved
and gets more regular service than we could hope to provide.
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Figure 5.2: A feature observation in bundle adjustment, from Moore et al. [19]
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This tutorial for ISIS’s bundle adjustment tools is taken from [20] and [21]. These tools are not a product of
NASA nor the authors of Stereo Pipeline. They were created by USGS and their documentation is available
at [6].

5.1.1 Processing Mars Orbital Camera Imagery

What follows is an example of bundle adjustment using two MOC images of Hrad Vallis. We use images
E02/01461 and M01/00115, the same as used in Chapter 3. These images are available from NASA’s PDS
(the ISIS mocproc program will operate on either the IMQ or IMG format files, we use the .imq below in
the example). For reference, the following ISIS commands are how to convert the MOC images to ISIS
cubes.

ISIS 3> mocproc from= e0201461.imq to= e0201461.cub mapping=no
ISIS 3> mocproc from= m0100115.imq to= m0100115.cub mapping=no

Note that the resulting images are not map projected. Bundle adjustment requires the ability to project
arbitrary 3D points into the camera frame. The process of map projecting an image dissociates the camera
model from the image. Map projecting can be perceived as the generation of a new infinitely large camera
sensor that may be parallel to the surface, a conic shape, or something more complex. That makes it
extremely hard to project a random point into the camera’s original model. The math would follow the
transformation from projection into the camera frame, then projected back down to surface that ISIS uses,
then finally up into the infinitely large sensor. Jigsaw does not support this and thus does not operate on
map projected imagery.

Before we can dive into creating our tie-point measurements we must finish prepping these images. The
following commands will add a vector layer to the cube file that describes its outline on the globe. It will
also create a data file that describes the overlapping sections between files.

ISIS 3> footprintinit from= e0201461.cub
ISIS 3> footprintinit from= m0100115.cub
ISIS 3> echo *cub | xargs -n1 echo > cube.lis
ISIS 3> findimageoverlaps from=cube.lis overlaplist=overlap.lis

At this point, we are ready to start generating our measurements. This is a three step process that requires
defining a geographic pattern for the layout of the points on the groups, an automatic registration pass, and
finally a manual clean up of all measurements. Creating the ground pattern of measurements is performed
with autoseed. It requires a settings file that defines the spacing in meters between measurements. For
this example, write the following text into a autoseed.def file.

Group = PolygonSeederAlgorithm
Name = Grid
MinimumThickness = 0.01
MinimumArea = 1
XSpacing = 1000
YSpacing = 2000

End_Group

The minimum thickness defines the minimum ratio between the sides of the region that can have points
applied to it. A choice of 1 would define a square and anything less defines thinner and thinner rectangles.
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The minimum area argument defines the minimum square meters that must be in an overlap region. The
last two are the spacing in meters between control points. Those values were specifically chosen for this
pair so that about 30 measurements would be produced from autoseed. Having more control points just
makes for more work later on in this process. Run autoseed with the following instruction.

Figure 5.3: A visualization of the features layed out by autoseed in qnet. Note that the marks do not
cover the same features between images. This is due to the poor initial spice data for MOC imagery.

ISIS 3> autoseed fromlist=cube.lis overlaplist=overlap.lis \
onet=control.net deffile=autoseed.def networkid=moc \
pointid=???? description=hrad_vallis

The next step is to perform auto registration of these features between the two images using pointreg.
This program also requires a settings file that describes how to do the automatic search. Copy the text box
below into a autoRegTemplate.def file.

Object = AutoRegistration
Group = Algorithm

Name = MaximumCorrelation
Tolerance = 0.7

EndGroup

Group = PatternChip
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Samples = 21
Lines = 21
MinimumZScore = 1.5
ValidPercent = 80

EndGroup

Group = SearchChip
Samples = 75
Lines = 1000

EndGroup
EndObject

The search chip defines the search range for which pointreg will look for matching imagery. The pattern
chip is simply the kernel size of the matching template. The search range is specific for this image pair.
The control network result after autoseed had a large vertical offset in the ball park of 500 px. The large
misalignment dictated the need for the large search in the lines direction. Use qnet to get an idea for what
the pixel shifts look like in your stereo pair to help you decide on a search range. In this example, only one
measurement failed to match automatically. Here are the arguments to use in this example of pointreg.

ISIS 3> pointreg fromlist=cube.lis cnet=control.net \
onet=control_pointreg.net deffile=autoRegTemplate.def

The third step is to manually edit the control and verify the measurements in qnet. Type qnet in the
terminal and then open cube.lis and lastly control_pointreg.net. From the Control Network Navigator
window, click on the first point listed as 0001. That opens a third window called the Qnet Tool. That
window will allow you to play a flip animation that shows alignment of the feature between the two images.
Correcting a measurement is performed by left clicking in the right image, then clicking Save Measure, and
finally finishing by clicking Save Point.

In this tutorial, measurement 0025 ended up being incorrect. Your number may vary if you used different
settings than the above or if MOC spice data has improved since this writing. When finished, go back to
the main Qnet window. Save the final control network as control_qnet.net by clicking on File, and then
Save As.

Once the control network is finished, it is finally time to start bundle adjustment. Here’s what the call to
jigsaw looks like:

ISIS 3> jigsaw fromlist=cube.lis update=yes twist=no radius=yes \
cnet=control_qnet.net onet=control_ba.net

The update option defines that we would like to update the camera pointing, if our bundle adjustment
converges. The twist=no says to not solve for the camera rotation about the camera bore. That property
is usually very well known as it is critical for integrating an image with a line-scan camera. The radius=yes

means that the radius of the 3D features can be solved for. Using no will force the points to use height
values from another source, usually LOLA or MOLA.

The above command will spew out a bunch of diagnostic information from every iteration of the optimization
algorithm. The most important feature to look at is the sigma0 value. It represents the mean of pixel
errors in the control network. In our run, the initial error was 1065 px and the final solution had an error
of 1.1 px.
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Figure 5.4: A visualization of the features after manual editing in qnet. Note that the marks now appear
in the same location between images.

Producing a DEM using the newly created camera corrections is the same as covered in the Tutorial on
page 17. When using jigsaw, it modifies a copy of the spice data that is stored internally to the cube file.
Thus when we want to create a DEM using the correct camera geometry, no extra information needs to be
given to stereo since it is already contained in the file. In the event a mistake has been made, spiceinit
will overwrite the spice data inside a cube file and provide the original uncorrected camera pointings.

ISIS 3> stereo E0201461.cub M0100115.cub bundled/bundled
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Data Processing Examples

This chapter showcases a variety of results that are possible when processing different data sets with the
Stereo Pipeline. It is also a shortened guide that shows the commands used to process specific mission
data. There is no definitive method yet for making elevation models as each stereo pair is unique. We hope
that the following sections serve as a cookbook for strategies that will get you started in processing your
own data. We recommend that you second check your results against another source.

6.1 Guidelines for Selecting Stereo Pairs

When choosing image pairs to process, images that are taken with similar viewing angles, lighting conditions,
and significant surface coverage overlap are best suited for creating terrain models. Depending on the
characteristics of the mission data set and the individual images, the degree of acceptable variation will
differ. Significant differences between image characteristics increases the likelihood of stereo matching error
and artifacts, and these errors will propagate through to the resulting data products.

Although images do not need to be map projected before running the stereo program, we recommend
that you do run cam2map (or cam2map4stereo.py) beforehand, especially for image pairs that contain large
topographic variation (and therefore large disparity differences across the scene, e.g. Valles Marineris).
Map projection is especially necessary when processing HiRISE images. This removes the large disparity
differences between HiRISE images and leaves only the small detail for the Stereo Pipeline to compute.
Remember that ISIS can work backwards through a map-projection when applying the camera model, so
the geometric integrity of your images will not be sacrificed if you map project first.

Excessively noisy images will not correlate well, so images should be photometrically calibrated in whatever
fashion suits your purposes. If there are photometric problems with the images, those photometric defects
can be misinterpreted as topography.

Remember, in order for stereo to process stereo pairs in ISIS cube format, the images must have had
SPICE data associated by running ISIS’s spiceinit program run on them first.

6.1.1 Combatting long run times

The factor that predominantly determines running time in the Stereo Pipeline is the size of the search space
considered by the correlation algorithm. These are set in the stereo.default file using the corr-search
parameter. If you comment that parameter out (either by putting a ‘#’ at the beginning of their line or
deleting them from your stereo.default file), the Stereo Pipeline will try to automatically determine the
search range for you, but this does not always work perfectly. A spurious bad match can lead the pipeline
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to select a search range that is far too large, and performance will suffer as a result. If you know (or
can estimate) the range of horizontal and vertical offsets you expect to see between the two images, then
you may want to try setting the search range yourself in your stereo.default using the aforementioned
parameters.

More generally, here are three strategies that tend to keep the search range small and run-times low:

1. You can crop your stereo pair (using the ISIS crop command) to a small region of interest within a
large stereo pair. ISIS and the Stereo Pipeline will keep track of these crop parameters automatically
and take them into account when applying the camera model during triangulation. You may want
to work with a cropped pair when you first start working with a new data set. Run times will be
much lower (minutes instead of days), and you can quickly tune parameters in the stereo.default
file before scaling up to the full image.

2. The ISIS reduce command can be used to subsample the image pair. In this case, you are trading
resolution for speed, so this probably only makes sense for debugging or “previewing” 3D terrain.
That said, subsampling will tend to increase the signal to noise ratio, so it may also be helpful for
pulling 3D terrain out of noisy, low quality images.

These options of croping or reducing the resolution of the source imagery are only easily achieved
with ISIS sessions. Pinhole and Digital Globe sessions will be required to manually edit their camera
models in the event that you have edited the source imagery. This is a unique problem for each
camera model and thus will not be discussed here.

3. You can map project the images (using the ISIS cam2map command or the cam2map4stereo.py pro-
gram provided with the Stereo Pipeline). If you project both images into the same map projection
and same pixel scale, then they will be aligned modulo uncertainty in spacecraft telemetry (typically
10-100’s of meters of error when the image is projected onto the ground). By default cam2map will
also project the image onto the local elevation model (MOLA or LOLA), which removes the stereo
disparity in the images that is due to coarse topography. The resulting image pair has only small
position offsets and fine 3D detail left to discover, so the search range can be kept very small and
run times can be improved. Again, ISIS and the Stereo Pipeline will keep track of how these map
projections affect the camera model, and take them into account when building up the 3D mesh via
triangulation. If you use cam2map, be sure that your stereo.default’s alignment-method is set to
NONE. Note also that the --lat and --lon arguments to cam2map4stereo.py can be used to crop
your stereo images, and the --resolution argument can be used to subsample them.

If you are working with very large images, we highly recommend cropping or subsampling and working
with smaller sized images while you fine-tune the parameters in the stereo.default file, and once you get
satisfactory results to apply those parameters to the full images.

6.2 Mars Reconnaissance Orbiter HiRISE

HiRISE is one of the most challenging cameras to use when making 3D models because HiRISE exposures
can be several gigabytes each. Working with this data requires patience as it will take time.

One important fact to know about HiRISE is that it is composed of multiple linear CCDs that are arranged
side by side with some vertical offsets. These offsets mean that the CCDs will view some of the same terrain
but at a slightly different time and a slightly different angle. Mosaicking the CCDs together to a single
image is not a simple process and involves living with some imperfections.
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One cannot simply use the HiRISE RDR products, as they do not have the required geometric stability.
Instead, the HiRISE EDR products must be assembled using ISIS noproj. The USGS distributes a script
in use by the HiRISE team that works forward from the team-produced ‘balance’ cubes, which provides
a de-jittered, noproj’ed mosaic of a single observation, which is perfectly suitable for use by the Stereo
Pipeline (this script was originally engineered to provide input for SOCET SET). However, the ‘balance’
cubes are not available to the general public, and so we include a program (hiedr2mosaic.py, written in
Python) that will take PDS available HiRISE EDR products and walk through the processing steps required
to provide good input images for stereo.

The program takes all the red CCDs and projects them using the ISIS noproj command into the perspective
of the RED5 CCD. From there, hijitreg is performed to work out the relative offsets between CCDs.
Finally the CCDs are mosaicked together using the average offset listed from hijitreg using the handmos
command. Below is an outline of the processing.

hi2isis # Import HiRISE IMG to Isis
hical # Calibrate
histitch # Assemble whole-CCD images from the channels
spiceinit
spicefit # For good measure
noproj # Project all images into perspective of RED5
hijitreg # Work out alignment between CCDs
handmos # Mosaic to single file

To use our script, first go to the directory where you have downloaded the HiRISE’s RED EDR IMG files.
You can run the hiedr2mosaic.py program without any arguments to view a short help statement, with
the -h option to view a longer help statement, or just run the program on the EDR files like so:

hiedr2mosaic.py *.IMG

If you have more than one observation’s worth of EDRs in that directory, then limit the program to just
one observation’s EDRs at a time, e.g. hiedr2mosaic.py PSP_001513_1655*IMG. If you run into problems,
try using the -k option to retain all of the intermediary image files to help track down the issue. The
hiedr2mosaic.py program will create a single mosaic file with the extension .mos_hijitreged.norm.cub.
Be warned that the operations carried out by hiedr2mosaic.py can take many hours to complete on the
very large HiRISE images.

Finally we recommend map projecting the product and normalizing both images in the stereo pair using
the same dynamic range. Notice that we map project the second image using the same map settings and
crop of the first image. This means the images will share the same origin and the stereo.default search
range can be centered around zero.

ISIS 3> cam2map4stereo.py first.mos_hijitreged.norm.cub second.mos_hijitreged.norm.cub
ISIS 3> bandnorm f=first.map.cub t=first.norm.cub
ISIS 3> bandnorm f=second.map.cub t=second.norm.cub
ISIS 3> ls first.norm.cub second.norm.cub > fromlist
ISIS 3> ls first.norm.cub > holdlist
ISIS 3> equalizer fromlist=fromlist holdlist=holdlist
ISIS 3> mkdir result
ISIS 3> stereo first.norm.equ.cub second.norm.equ.cub result/output
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In the future, the HiRISE team will be producing de-jittered, noproj’ed imagery in the extras/ directory
of their PDS volume. When this happens, most of the above commands will no longer be required, as you
will be able to just run cam2map4stereo.py on their provided imagery.

6.2.1 Columbia Hills

HiRISE observations PSP_001513_1655 and PSP_001777_1650 are on the floor of Gusev Crater and
cover the area where the MER Spirit landed and has roved, including the Columbia Hills.

(a) 3D Rendering (b) KML Screenshot

Figure 6.1: Example output using HiRISE images PSP_001513_1655 and PSP_001777_1650 of the
Columbia Hills.

Commands

Download all 20 of the RED EDR .IMG files for each observation.

ISIS 3> hiedr2mosaic.py PSP_001513_1655_RED*.IMG
ISIS 3> hiedr2mosaic.py PSP_001777_1650_RED*.IMG
ISIS 3> cam2map4stereo.py PSP_001777_1650_RED.mos_hijitreged.norm.cub \

PSP_001513_1655_RED.mos_hijitreged.norm.cub
ISIS 3> bandnorm from=PSP_001513_1655_RED.map.cub \

to=PSP_001513_1655_RED.map.norm.cub
ISIS 3> bandnorm from=PSP_001777_1650_RED.map.cub \

to=PSP_001777_1650_RED.map.norm.cub
ISIS 3> rm *RED.map.cub
ISIS 3> mkdir result
ISIS 3> stereo PSP_001513_1655.map.norm.cub \

PSP_001777_1650.map.norm.cub result/output
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stereo.default

The stereo.default example file should apply well to HiRISE. Just set alignment-method to homography.
The corr-kernel value can usually be safely reduced to 21 pixels to resolve finer detail and faster processing
for images with good contrast.
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6.2.2 East Mareotis Tholus

HiRISE observations PSP_001760_2160 and PSP_001364_2160 cover East Mareotis Tholus, a small vol-
cano in Tempe Terra.

(a) 3D Rendering (b) KML Screenshot

Figure 6.2: Example output using HiRISE images PSP_001364_2160 and PSP_001760_2160 of East
Mareotis Tholus.

Commands

Download all 20 of the RED EDR .IMG files for each observation.

ISIS 3> hiedr2mosaic.py PSP_001364_2160_RED*.IMG
ISIS 3> hiedr2mosaic.py PSP_001760_2160_RED*.IMG
ISIS 3> cam2map4stereo.py PSP_001364_2160_RED.mos_hijitreged.norm.cub \

PSP_001760_2160_RED.mos_hijitreged.norm.cub
ISIS 3> bandnorm from=PSP_001364_2160_RED.map.cub \

to=PSP_001364_2160_RED.map.norm.cub
ISIS 3> bandnorm from=PSP_001760_2160_RED.map.cub \

to=PSP_001760_2160_RED.map.norm.cub
ISIS 3> ls *.map.norm.cub > fromlist
ISIS 3> ls *1760*.map.norm.cub > holdlist
ISIS 3> equalizer fromlist=fromlist holdlist=holdlist
ISIS 3> rm *RED.map.norm.cub *RED.map.cub
ISIS 3> mkdir result
ISIS 3> stereo PSP_001364_2160.map.norm.equ.cub \

PSP_001760_2160.map.norm.equ.cub result/output

stereo.default

The stereo.default example file should apply well to HiRISE. Just set alignment-method to homography.
The corr-kernel parameter can usually be safely reduced to 21 pixels to resolve finer detail and faster
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processing for images with good contrast.
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6.2.3 North Terra Meridiani Crop

HiRISE observations PSP_001981_1825 and PSP_002258_1825 show a small crater filled by layered
material.

(a) 3D Rendering (b) KML Screenshot

Figure 6.3: Example output using cropped HiRISE data of North Terra Meridiani.

Commands

Notice here that we have applied a crop to select a subset of these HiRISE images that we are interested in.
Cropping is often an efficient way to go because it greatly reduces the amount of computation necessary to
get results in a limited area. As always, Download all 20 of the RED EDR .IMG files for each observation.

ISIS 3> hiedr2mosaic.py PSP_001981_1825_RED*.IMG
ISIS 3> hiedr2mosaic.py PSP_002258_1825_RED*.IMG
ISIS 3> cam2map from=PSP_001981_1825_RED.mos_hijitreged.norm.cub \

to=PSP_001981_1825_REDmosaic.map.cub
ISIS 3> cam2map from=PSP_002258_1825_RED.mos_hijitreged.norm.cub \

map=PSP_001981_1825_REDmosaic.map.cub \
to=PSP_002258_1825_REDmosaic.map.cub matchmap=true

ISIS 3> bandnorm from=PSP_001981_1825_REDmosaic.map.cub \
to=PSP_001981_1825_REDmosaic.map.norm.cub

ISIS 3> bandnorm from=PSP_002258_1825_REDmosaic.map.cub \
to=PSP_002258_1825_REDmosaic.map.norm.cub

ISIS 3> ls *.map.norm.cub > fromlist
ISIS 3> ls *1981*.map.norm.cub > holdlist
ISIS 3> equalizer fromlist=fromlist holdlist=holdlist
ISIS 3> crop from=PSP_001981_1825_REDmosaic.map.norm.equ.cub \

to=PSP_001981_1825.crop.cub sample=7497 line=41318 nsamp=10000 nline=10000
ISIS 3> crop from=PSP_002258_1825_REDmosaic.map.norm.equ.cub \

to=PSP_002258_1825.crop.cub sample=7982 line=41310 nsamp=10000 nline=10000
ISIS 3> rm *REDmosaic*.cub
ISIS 3> mkdir result
ISIS 3> stereo PSP_001981_1825.crop.cub PSP_002258_1825.crop.cub result/output
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stereo.default

The stereo.default example file should apply well to HiRISE. Just set alignment-method to homography.
The corr-kernel value can usually be safely reduced to 21 pixels to resolve finer detail and faster processing
for images with good contrast.

6.3 Mars Reconnaissance Orbiter CTX

Context Camera (CTX) is a moderate camera to work with. Processing times for CTX can be pretty long
when using Bayes EM subpixel refinement. Otherwise the disparity between images is relatively small,
allowing efficient computation and a reasonable processing time.

6.3.1 North Terra Meridiani

In this example, we use map projected images. Map projecting the images is the most reliable way
to align the images for correlation. However when possible, use non-map-projected images with the
alignment-method homography option. This greatly reduces the time spent in triangulation. For all
cases using linescan cameras, triangulation of map-projected images is 10x slower than non-map-projected
images.

This example is distributed in the examples/CTX directory.

(a) 3D Rendering (b) KML Screenshot

Figure 6.4: Example output possible with the CTX imager aboard MRO.
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Commands

Download the CTX images P02_001981_1823_XI_02N356W.IMG and P03_002258_1817_XI_01N356W.IMG
from the PDS.

ISIS 3> mroctx2isis from=P02_001981_1823_XI_02N356W.IMG to=P02_001981_1823.cub
ISIS 3> mroctx2isis from=P03_002258_1817_XI_01N356W.IMG to=P03_002258_1817.cub
ISIS 3> spiceinit from=P02_001981_1823.cub
ISIS 3> spiceinit from=P03_002258_1817.cub
ISIS 3> ctxcal from=P02_001981_1823.cub to=P02_001981_1823.cal.cub
ISIS 3> ctxcal from=P03_002258_1817.cub to=P03_002258_1817.cal.cub

you can also optionally run ctxevenodd on the cal.cub files, if needed
ISIS 3> cam2map4stereo.py P02_001981_1823.cal.cub P03_002258_1817.cal.cub
ISIS 3> mkdir result
ISIS 3> stereo P02_001981_1823.map.cub P03_002258_1817.map.cub results/out

stereo.default

The stereo.default example file works generally well with all CTX pairs. Just set alignment-method to
homography.
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6.4 Mars Global Surveyor MOC-NA

In the Stereo Pipeline Tutorial in Chapter 3, we showed you how to process a narrow angle MOC stereo
pair that covered a portion of Hrad Vallis. In this section we will show you more examples, some of which
exhibit a problem common to stereo pairs from linescan imagers: “spacecraft jitter” is caused by oscillations
of the spacecraft due to the movement of other spacecraft hardware. All spacecraft wobble around to some
degree but some are particularly susceptible.

Jitter causes wave-like distortions along the track of the satellite orbit in DEMs produced from linescan
camera images. This effect can be very subtle or quite pronounced, so it is important to check your
data products carefully for any sign of this type of artifact. The following examples will show the typical
distortions created by this problem.

Note that the science teams of HiRISE and Lunar Reconnaissance Orbiter Camera (LROC) are actively
working on detecting and correctly modeling jitter in their respective SPICE data. If they succeed in this,
the distortions will still be present in the raw imagery, but the jitter will no longer produce ripple artifacts
in the DEMs produced using ours or other stereo reconstruction software.

6.4.1 Ceraunius Tholus

Ceraunius Tholus is a volcano in northern Tharsis on Mars. It can be found at 23.96 N and 262.60 E. This
DEM crosses the volcano’s caldera.

(a) 3D Rendering (b) KML Screenshot

Figure 6.5: Example output for MOC-NA of Ceraunius Tholus. Notice the presence of severe washboarding
artifacts due to spacecraft “jitter.”

Commands

Download the M08/06047 and R07/01361 images from the PDS.

ISIS 3> moc2isis f=M0806047.img t=M0806047.cub
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ISIS 3> moc2isis f=R0701361.img t=R0701361.cub
ISIS 3> spiceinit from=M0806047.cub
ISIS 3> spiceinit from=R0701361.cub
ISIS 3> cam2map4stereo.py M0806047.cub R0701361.cub
ISIS 3> mkdir result
ISIS 3> stereo M0806047.map.cub R0701361.map.cub result/output

stereo.default

The stereo.default example file works generally well with all MOC-NA pairs. Just set alignment-method
to homography.
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6.4.2 North Tharsis

These images cover troughs and terraces in northern Tharsis. This DEM is located at 20.20 N and 118.18
W on Mars.

(a) 3D Rendering (b) KML Screenshot

Figure 6.6: Example output for MOC-NA of North Tharsis.

Commands

Download the M08/03097.img and S07/01420 images from the PDS.

ISIS 3> moc2isis f=M0803097.img t=M0803097.cub
ISIS 3> moc2isis f=S0701420.img t=S0701420.cub
ISIS 3> cam2map4stereo.py M0803097.cub S0701420.cub
ISIS 3> mkdir result
ISIS 3> stereo M0803097.map.cub S0701420.map.cub result/output

stereo.default

The stereo.default example file works generally well with all MOC-NA pairs. Just set alignment-method
to homography.
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6.5 Mars Exploration Rovers MER

The MER rovers have several cameras on board and they all seem to have a stereo pair. With ASP you
are able to process the PANCAM, NAVCAM, and HAZCAM camera imagery. ISIS has no telemetry or
camera instrinsic supports for these images. That however is not a problem as their raw imagery contains
the cameras’ information in JPL’s CAHV, CAHVOR, and CHAVORE formats.

These cameras are all variations of a simple pinhole camera model so they are processed with ASP in the
PINHOLE session instead of the usual ISIS. ASP only supports creating of point clouds. The *-PC.tif is a

raw point cloud with the first 3 channels being XYZ in the rover site’s coordinate frame. We don’t support
the creation of DEMs from these images and that is left as an excercise for the user.

6.5.1 PANCAM, NAVCAM, HAZCAM

All of these cameras are processed the same way. I’ll be showing 3D processing of the front hazard cams. The
only new things in the pipeline is the new executable mer2camera along with the use of alignment-method
epipolar. This example is also provided in the MER data example directory.

(a) Rectified Input (b) Output Point Cloud

Figure 6.7: Example output possible with the front hazard cameras.
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Commands

Download 2f194370083effap00p1214l0m1.img and 2f194370083effap00p1214r0m1.img from the PDS.

ISIS 3> gdal_translate -scale -ot byte 2f194370083effap00p1214l0m1.img \
2f194370083effap00p1214l0m1.tif

ISIS 3> gdal_translate -scale -ot byte 2f194370083effap00p1214r0m1.img \
2f194370083effap00p1214r0m1.tif

ISIS 3> mer2camera 2f194370083effap00p1214l0m1.img
ISIS 3> mer2camera 2f194370083effap00p1214r0m1.img
ISIS 3> stereo 2f194370083effap00p1214l0m1.tif 2f194370083effap00p1214r0m1.tif \

2f194370083effap00p1214l0m1.cahvore 2f194370083effap00p1214r0m1.cahvore \
fh01/fh01

stereo.default

The default stereo settings will work but change the following options:

additional settings for MER
alignment-method EPIPOLAR
force-use-entire-range

# This deletes points that are too far away
# from the camera to truly triangulate.
universe-center Camera
near-universe-radius 0.7
far-universe-radius 80.0
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6.6 Lunar Reconaissance Orbiter LROC NAC

6.6.1 Lee-Lincoln Scarp

This stereo pair covers the Taurus-Littrow valley on the Moon where, on December 11, 1972, the astronauts
of Apollo 17 landed. However, this stereo pair does not contain the landing site. It is slightly west; focusing
on the Lee-Lincoln scarp that is on North Massif. The scarp is an 80 m high feature that is the only visible
sign of a deep fault.

(a) 3D Rendering (b) KML Screenshot

Figure 6.8: Example output possible with a LROC NA stereo pair, using only a single CCD from each
observation.

Commands

Download the EDRs for the left CCDs for observations M104318871 and M104318871. Alternatively you
can search by original IDs of 2DB8 and 4C86 in the PDS.

ISIS 3> lronac2isis from=M104318871LE.img to=M104318871LE.cub
ISIS 3> lronac2isis from=M104311715LE.img to=M104311715LE.cub
ISIS 3> spiceinit M104318871LE.cub
ISIS 3> spiceinit M104311715LE.cub
ISIS 3> lronaccal from=M104318871LE.cub to=M104318871LE.cal.cub
ISIS 3> lronaccal from=M104311715LE.cub to=M104311715LE.cal.cub
ISIS 3> cam2map4stereo.py M104318871LE.cal.cub M104311715LE.cal.cub
ISIS 3> stereo M104318871LE.map.cub M104311715LE.map.cub result/output

stereo.default

The stereo.default example file works generally well with LRO-NAC pairs. The recommended route for
processing LRO-NAC imagery is by map projecting them. Map-projecting with higher resolution data such
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as LRO-WAC Global DTM also helps processing greatly. When map projecting, be sure to remember to
set alignment-method NONE.

6.7 Apollo 15 Metric Camera Images

Apollo Metric images were all taken at regular intervals, which means that the same stereo.default can
be used for all sequential pairs of images. Apollo Metric images are ideal for stereo processing. They
produce consistent, excellent results.

The scans performed by ASU are sufficiently detailed to exhibit film grain at the highest resolution. The
amount of noise at the full resolution is not helpful for the correlator, so we recommend subsampling the
images by a factor of 4.

Currently the tools to ingest Apollo TIFFs into ISIS are not available, but these images should soon be
released into the PDS for general public usage.

6.7.1 Ansgarius C

Ansgarius C is a small crater on the west edge of the farside of the Moon near the equator. It is east of
Kapteyn A and B.

(a) 3D Rendering (b) KML Screenshot

Figure 6.9: Example output possible with Apollo Metric frames AS15-M-2380 and AS15-M-2381.
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Commands

Process Apollo TIFF files into ISIS.

ISIS 3> reduce from=AS15-M-2380.cub to=sub4-AS15-M-2380.cub sscale=4 lscale=4
ISIS 3> reduce from=AS15-M-2381.cub to=sub4-AS15-M-2381.cub sscale=4 lscale=4
ISIS 3> spiceinit from=sub4-AS15-M-2380.cub
ISIS 3> spiceinit from=sub4-AS15-M-2381.cub
ISIS 3> mkdir result
ISIS 3> stereo sub4-AS15-M-2380.cub sub4-AS15-M-2381.cub result/output

stereo.default

The stereo.default example file works generally well with all Apollo pairs. Just set alignment-method to
homography.
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6.8 Cassini ISS NAC

This is a proof of concept showing the strength of building the Stereo Pipeline on top of ISIS. Support
for processing ISS NAC stereo pairs was not a goal during our design of the software, but the fact that a
camera model exists in ISIS means that it too can be processed by the Stereo Pipeline.

Identifying stereo pairs from spacecraft that do not orbit their target is a challenge. We have found that
one usually has to settle with images that are not ideal: different lighting, little perspective change, and
little or no stereo parallax. So far we have had little success with Cassini’s data, but nonetheless we provide
this example as a potential starting point.

6.8.1 Rhea

Rhea is the second largest moon of Saturn and is roughly a third the size of our own Moon. This example
shows, at the top right of both images, a giant impact basin named Tirawa that is 220 miles across. The
bright white area south of Tirawa is ejecta from a new crater. The lack of texture in this area poses a
challenge for our correlator. The results are just barely useful: the Tirawa impact can barely be made out
in the 3D data while the new crater and ejecta become only noise.

Commands

Download the N1511700120_1.IMG and W1567133629_1.IMG images and their label (.LBL) files from the
PDS.

ISIS 3> ciss2isis f=N1511700120_1.LBL t=N1511700120_1.cub
ISIS 3> ciss2isis f=W1567133629_1.LBL t=W1567133629_1.cub
ISIS 3> cisscal from=N1511700120_1.cub to=N1511700120_1.lev1.cub
ISIS 3> cisscal from=W1567133629_1.cub to=W1567133629_1.lev1.cub
ISIS 3> fillgap from=W1567133629_1.lev1.cub to=W1567133629_1.fill.cub %Only one image

%exhibits the problem
ISIS 3> cubenorm from=N1511700120_1.lev1.cub to=N1511700120_1.norm.cub
ISIS 3> cubenorm from=W1567133629_1.fill.cub to=W1567133629_1.norm.cub
ISIS 3> spiceinit fr= N1511700120_1.norm.cub
ISIS 3> spiceinit fr= W1567133629_1.norm.cub
ISIS 3> cam2map from=N1511700120_1.norm.cub to=N1511700120_1.map.cub
ISIS 3> cam2map from=W1567133629_1.norm.cub map=N1511700120_1.map.cub \
ISIS 3> to=W1567133629_1.map.cub matchmap=true
ISIS 3> ls *.map.cub > fromlist
ISIS 3> ls N*.map.cub > holdlist
ISIS 3> equalizer fromlist=fromlist holdlist=holdlist
ISIS 3> mkdir result
ISIS 3> stereo N1511700120_1.map.equ.cub W1567133629_1.map.equ.cub result/rhea
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(a) Original Left Image (b) Original Right Image

(c) Map Projected Left (d) 3D Rendering

Figure 6.10: Example output of what is possible with Cassini’s ISS NAC
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stereo.default
stereo.default for Cassini ISS

### PREPROCESSING
alignment-method None
force-use-entire-range
individually-normalize

### CORRELATION
prefilter-mode 2
prefilter-kernel-width 1.5

cost-mode 2

corr-kernel 25 25
corr-search -55 -2 -5 10

subpixel-mode 3
subpixel-kernel 21 21

### FILTERING
rm-half-kernel 5 5
rm-min-matches 60 # Units = percent
rm-threshold 3
rm-cleanup-passes 1
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6.9 Digital Globe Imagery

Digital Globe provides imagery from the Quick Bird and the three World View satellites. These are the
hardest images to process with Ames Stereo Pipeline because they are exceedingly large, much larger than
HiRISE imagery. There is also a wide range of terrain challenges and atmospheric effects that can confuse
ASP. Trees are particularly difficult for us since their texture is nearly nadir and perpendicular to our line
of sight. It is important to know that the driving force behind our support for Digital Globe imagery is to
create models of ice and bare rock. That is the type of imagery that we have tested with and have focused
on. If we can make models of wooded or urban areas, that is a bonus, but we can’t provide any advice for
how to perform or improve the results if you choose to use ASP in that way.

ASP can only process Level 1B imagery and can not process Digital Globe’s aerial imagery. We can pull a
camera model from the RPC coefficients or from their linear camera model described in the provided XML
files. We won’t be discussing the RPC method in this section, however you can learn more about it in the
later example where we discuss processing GeoEye imagery which comes only with RPC coefficients. Our
implementation of the linear camera model only models the geometry of the imaging hardware itself and
velocity aberration. We do not currently model refraction due to light bending in Earth’s atmosphere. It is
our understanding that this could represent misplacement of points up to a meter for some imagery. However
this is still smaller error than the error from measurement of the spacecraft’s position and orientation. We
do not provide facilities for correcting spacecraft attitude either. So you will have to perform some manual
shifting of the data to get it into the correct location. These errors are fortunately much less than found
with extra-terrestrial missions largely due to the availability of GPS and high bandwidth comms with the
satellite.

In the next 2 sections we will show how to process unmodified and map projected variants of World View
1 imagery. This steps will be the same for Digital Globe’s other satellites. The imagery we are using are
from the free stereo pair example of Lucknow, India available from Digital Globe’s website [12]. These
images represent a non-ideal problem for us since this is an urban location, but at least you should be able
to download this imagery yourself and follow along.

6.9.1 Processing Raw

After you have downloaded the example stereo imagery of India, you will find a directory titled 052783824050_01_P001_PAN.
It contains a lot of files and many of them contain redundant information just displayed in different forms.
We are interested only in the TIF or NTF imagery and the similarly named XML file. In this example
product from Digital Globe, we received our ideal format of a TIFF file. NTF files can sometimes use
JPEG2000 for the underlining encoding. We supply a decoder from OpenJPEG in ASP, unfortunately it
is quite slow and might mean extremely long preprocessing times.

Further investigation of the files downloaded will show that there are in fact 4 files. This is because Digital
Globe breaks down a single observation into multiple files for what we assume are size reasons. These files
have a pattern string of “_R[N]C1-”, where N increments for every subframe of the full observation. ASP
currently doesn’t know how to ingest an entire frame, so instead we can only process pairs of subframes.

Since we are ingesting these images raw, it is strongly recommend that you use a homography alignment
to reduce the search range. Processing with the stereo command is as simple as feeding the imagery as
the second and third argument. The XML data is fed as the camera model argument and thus are used as
the fourth and fifth argument. The completed command and a rendering in QGIS are shown below.

Commands

> stereo 12FEB12053305-P1BS_R2C1-052783824050_01_P001.TIF \
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Figure 6.11: Example colorized height map and ortho image output.

12FEB12053341-P1BS_R2C1-052783824050_01_P001.TIF \
12FEB12053305-P1BS_R2C1-052783824050_01_P001.XML \
12FEB12053341-P1BS_R2C1-052783824050_01_P001.XML dg/dg

stereo.default

The stereo.default example file works generally well with all Digital Globe pairs. As well as they can
anyways. Just set alignment-method to homography.

6.9.2 Processing Map Projected Imagery

Eventually you will run into Digital Globe imagery that has too much parallax to be processed in a
reasonable time. (That wasn’t the case for Lucknow, India because it is so flat.) We can speed up the
result by processing map projected versions of the imagery. The catch is, you are not allowed to use any map
projection software you like (such as GDAL). We need to have complete control of the process since ASP will
have to work backwards through this math and interpolations in order to make the final elevation model. So
we have provided a new utility called rpc_mapproject whose commands closely resemble point2dem. The
purpose of this tool is to use the simplified RPC model to map project the imagery unto a low resolution
and hole-less digital elevation model. Later, ASP will then work backwards through the RPC model and
then forward through the linear camera model to calculate the final result.

The hardest part of this whole process is getting your input low resolution 3D model. In this example
we will use a void filled variant of NASA SRTM data. Other choices might be GMTED2010 or USGS’s
NED data. However, you must be careful that the DEM data you are downloading does not use a vertical
datum. ASP only understand ellipsoidal references such as WGS84. Vertical datums such as NAVD88 used
by USGS’s NED data products or EGM96 should be added to your DEM’s elevations prior to use by ASP.
Not doing this might not properly negate the parallax seen between the two images, though it will not
corrupt the triangulation results. In other-words, we are saying you can sometimes get lucky ignoring the
vertical datums on the input but do not recommend doing that. Also, you should note, that the geoheader
attached to those types of files usually do not describe the vertical datum they used. That can only be
understood by careful reading of your provider’s documents.

The NASA SRTM square for our example spot in India is N26E080. Below are the commands for map
projecting the input and then running through stereo. You can use any projection you like as long as it
preserves detail in the imagery. Note also that we have added a seventh parameter to the stereo call where
we provide the input low resolution DEM.
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Figure 6.12: Example colorized height map and ortho image output.

Commands

The first step is downloading a void-filled SRTM tile to map project on to. In this example I used,
srtm_53_07.tif, a 90 meter resolution tile from the CGIAR-CSI modification of the original NASA product
[9].

> rpc_mapproject --t_srs "+proj=eqc +units=m +datum=WGS84" \
--tr 0.5 srtm_53_07.tif \
12FEB12053305-P1BS_R2C1-052783824050_01_P001.TIF \
12FEB12053305-P1BS_R2C1-052783824050_01_P001.XML \
left_mapped.tif

> rpc_mapproject --t_srs "+proj=eqc +units=m +datum=WGS84" \
--tr 0.5 srtm_53_07.tif \
12FEB12053341-P1BS_R2C1-052783824050_01_P001.TIF \
12FEB12053341-P1BS_R2C1-052783824050_01_P001.XML \
right_mapped.tif

> stereo left_mapped.tif right_mapped.tif \
12FEB12053305-P1BS_R2C1-052783824050_01_P001.XML \
12FEB12053341-P1BS_R2C1-052783824050_01_P001.XML \
dg/dg srtm_53_07.tif

stereo.default

The stereo.default example file works generally well with all Digital Globe pairs. As well as they can
anyways. Just set alignment-method to homography.
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6.10 GeoEye Imagery / RPC Imagery

GeoEye provides imagery from Ikonos and the two GeoEye satellites. They provide only Rational Polyno-
mial Camera (RPC) models. For the uninitiated, RPC represents four 20-element polynomials that map
geodetic coordinates to image coordinates. Since they are easy to implement, RPC represents a universal
camera model and can be had from many imaging providers such as RapidEye and Digital Globe. The
only downside is that it has less precision in our opinion compared to the linear camera model provided by
Digital Globe. For GeoEye, the only option is using RPC.

Our RPC read driver is GDAL. If the command gdalinfo can identify the RPC information inside the
headers of your files, we will likely be able to see it as well. This means that sometimes we can get away
with only providing a left and right image. This is specifically the case for GeoEye.

You can download an example stereo pair from GeoEye’s website at [11]. When we accessed the site, we
downloaded a GeoEye-1 image of Hobart, Australia. As previously stated in the Digital Globe section,
these types of images are not ideal for Ames Stereo Pipeline. This is both a forest and a urban area which
makes correlation difficult. ASP was designed more for modeling bare rock and ice. Any results we produce
in other environments is a bonus but is not our objective.

Figure 6.13: Example colorized height map and ortho image output.

Commands

> stereo po_312012_pan_0000000.tif po_312012_pan_0010000.tif geoeye/geoeye

stereo.default

The stereo.default example file works generally well with all GeoEye pairs. Just set alignment-method to
homography.
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6.11 Dawn (FC) Framing Camera

This is a NASA mission to visit two of the largest objects in the asteroid belt, Vesta and Ceres. After
having orbited Vesta for a year and a half, they finally started releasing their imagery. Thankfully, USGS’s
Astrogeology department has been supporting the mission this entire time. They’ve had a Dawn camera
model publicly available for at least the last 2 releases. Since ASP builds against USGS’s ISIS software, we
are able to leverage that model.

The framing camera on board Dawn is quite small and packs only a resolution of 1024x1024 pixels. This
means processing time is extremely short. To it’s benefit, it seems that the mission planners leave the
framing camera on taking shots quite rapidly. On a single pass, they seem to usually take a chain of FC
images that have a high overlap percentage. This opens the idea of using ASP to process not only the
sequential pairs, but also the wider baseline shots. Then someone could potentially average all the DEMs
together to create a more robust data product.

For this example, we downloaded the images FC21A0010191_11286212239F1T.IMG and FC21A0010192_11286212639F1T.IMG
which show the Cornelia crater. We must be honest, we found these images by looking at the popular
anaglyph shown on the Planetary Science Blog [15].

Figure 6.14: Example colorized height map and ortho image output.

Commands

First you must download the Dawn FC images from PDS.

ISIS3 > dawnfc2isis from=FC21A0010191_11286212239F1T.IMG \
to=FC21A0010191_11286212239F1T.cub

ISIS3 > dawnfc2isis from=FC21A0010192_11286212639F1T.IMG \
to=FC21A0010192_11286212639F1T.cub

ISIS3 > spiceinit from=FC21A0010191_11286212239F1T.cub
ISIS3 > spiceinit from=FC21A0010192_11286212639F1T.cub
ISIS3 > stereo FC21A0010191_11286212239F1T.cub \

FC21A0010192_11286212639F1T.cub stereo/stereo
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ISIS3 > point2dem stereo-PC.tif --orthoimage stereo-L.tif \
--t_srs "+proj=eqc +lat_ts=-11.5 +a=280000 +b=229000 +units=m"

stereo.default

The stereo.default example file worked for this stereo pair. Just set alignment-method to homography.
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Appendix A

Tools

This chapter provides a overview of the various tools that are provided as part of the Ames Stereo Pipeline,
and a summary of their command line options.

A.1 stereo

The stereo program is the primary workhorse of the Ames Stereo Pipeline. It takes a stereo pair of images
that overlap and creates an output point cloud image that can be processed into a 3D model or DEM using
the point2mesh or point2dem programs, respectively.

Usage:
ISIS 3> stereo [options] Left_input_image Right_input_image output_file_prefix

This release of the stereo pipeline has been specifically designed to process USGS ISIS .cub files. However,
the stereo pipeline does have the capability to process other types of stereo image pairs (e.g. image files
with a CAHVOR camera model from the NASA MER rovers). If you would like to experiment with these
features, please contact us for more information.

The output_file_prefix is prepended to all output data files. For example, setting output_file_prefix
to ‘out’ will yield files with names like out-L.tif and out-PC.tif. To keep stereo pipeline results organized
in sub-directories, we recommend using an output prefix like ‘results-10-12-09/out’ for output_file_prefix .
The stereo program will create a directory called results-10-12-09/out and place files named out-L.tif,
out-PC.tif, etc. in that directory.

Table A.1: Command-line options for stereo

Option Description
--help|-h Display this help information
--threads integer(=0) Set the number threads to use. 0 means use

default defined in the program or in the .vwrc
file

--session-type|-t pinhole|isis|dg Select the stereo session type to use for pro-
cessing. Usually the program can select this
automatically for the file extension.

--stereo-file|-s filename(=./stereo.default) Define the stereo.default file to use
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--left-image-crop-win arg Do stereo in this region [xoff yoff xsize ysize]
of the left image [default: use the entire im-
age].

--entry-point|-e 1|2|3|4 Pipeline entry point

More information about the stereo.default configuration file can be found in Appendix B on page 85.
Similarly, stereo creates a lot of files, and they are all described in Appendix C on page 91.

A.1.1 Entry Points

The stereo -e number option can be used to restart a stereo job partway through the stereo correlation
process. Restarting can be useful when debugging while iterating on stereo.default settings.

Stage 0 (Preprocessing) normalizes the two images and aligns them by locating interest points and matching
them in both images. The program is designed to reject outlying interest points. This stage writes out the
pre-aligned images and the image masks.

Stage 1 (Disparity Map Initialization) performs pyramid correlation and builds a rough disparity map that
is used to seed the sub-pixel refinement phase.

Stage 2 (Sub-pixel Refinement) performs sub-pixel correlation that refines the disparity map.

Stage 3 (Outlier Rejection and Hole Filling) performs filtering of the disparity map and (optionally) fills in
holes using an inpainting algorithm. This phase also creates a “good pixel” map.

Stage 4 (Triangulation) generates a 3D point cloud from the disparity map.

A.1.2 Decomposition of Stereo

The stereo executable is actually a python script that makes calls to seperate C++ executables for each
entry point.

Stage 0 (Preprocessing) calls stereo_pprc. Multithreaded.

Stage 1 (Disparity Map Initialization) calls stereo_corr. Multithreaded.

Stage 2 (Sub-pixel Refinement) class stereo_rfne. Multithreaded.

Stage 3 (Outlier Rejection and Hole Filling) calls stereo_fltr. Multithreaded.

Stage 4 (Triangulation) calls stereo_tri. Single-Threaded.

All of the sub-programs have the same interface as stereo. Users processing a large number of stereo pairs
on a cluster my find it advantageous to call these executables in their own manner. An example would be
to run stages 0-3 in order for each stereo pair. Then run several sessions of stereo_tri since it is single
threaded.

A.2 disparitydebug

The disparitydebug program produces output images for debugging disparity images created from stereo.
The stereo tool produces several different versions of the disparity map; the most important ending with
extensions *-D.tif and *-F.tif. (see Appendix C for more information.) These raw disparity map files can
be useful for debugging because they contain raw disparity values as measured by the correlator; however
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they cannot be directly visualized or opened in a conventional image browser. The disparitydebug tool
converts a single disparity map file into two normalized TIFF image files (*-H.tif and *-V.tif, containing
the horizontal and vertical, or line and sample, components of disparity, respectively) that can be viewed
using any image display program.

The disparitydebug program will also print out the range of disparity values in a disparity map, that can
serve as useful summary statistics when tuning the search range settings in the stereo.default file.

Table A.2: Command-line options for disparitydebug

Options Description
--help|-h Display this help
--input-file filename Explicitly specify the input file
--output-prefix|-o filename specify the output file prefix
--output-filetype|-t type(=tif) Specify the outfile type
--float-pixels Save the resulting debug images as 32 bit floating point files

(if supported by the selected file type)

A.3 point2dem

The point2dem program produces a GeoTIFF terrain model or/and an orthographic image from a point
cloud image produced by the stereo command.

Example:
point2dem output-prefix -PC.tif -o stereo/filename -r moon \

--nodata-value -10000 -n

This produces a digital elevation model that has been referenced to the lunar spheroid of 1737.4 km. Pixels
with no data will be set to a value of -10000, and the resulting DEM will be saved in a simple cylindrical
map projection. The resulting DEM is stored by default as a one channel, 32-bit floating point GeoTIFF
file.

The -n option creates an 8-bit, normalized version of the DEM that can be easily loaded into a standard
image viewing application for debugging.

Another example:
point2dem output-prefix -PC.tif -o stereo/filename -r moon \

--orthoimage output-prefix -L.tif

This command takes the left input image and orthographically projects it onto the 3D terrain produced
by the Stereo Pipeline. The resulting *-DRG.tif file will be saved as an 8-bit GeoTIFF image in a simple
cylindrical map projection.

A.3.1 Comparing with MOLA data

When comparing the output of point2dem to laser altimeter data, like MOLA, it is important to understand
the different kinds of data that are being discussed. By default, point2dem returns planetary radius values
in meters. These are often large numbers that are difficult to deal with. If you use the -r mars option, the
output terrain model will be in meters of elevation with reference to the IAU reference spheroid for Mars:
3,396,190 m. So if a post would have a radius value of 3,396,195 m, in the model returned with the -r
mars option, that pixel would just be 5 m.
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You may want to compare the output to MOLA data. MOLA data is released in three ‘flavors,’ namely:
Topography, Radius, and Areoid. The MOLA Topography data product that most people use is just the
MOLA Radius product with the MOLA Areoid product subtracted. Additionally, it is important to note
that all of these data products have a reference value subtracted from them. The MOLA reference value is
NOT the IAU reference value, but 3,396,000 m.

So you cannot just compare the output of point2dem to the MOLA Topography data, since point2dem
doesn’t know about the Areoid.

In order to compare with the MOLA data, you can do one of two different things. You could oper-
ate purely in radius space, and have point2dem create radius values that are directly comparable to the
MOLA Radius data. You can do this by having point2dem subtract the MOLA reference value by setting
--semi-major-axis 3396000 and --semi-minor-axis 3396000.

To get values that are directly comparable to MOLA Topography data, you’ll need to run point2dem with
the --semi-major-axis and --semi-minor-axis switches with the MOLA reference, to get something that
is comparable with the MOLA Radius values. Then you’ll need to obtain the MOLA Areoid data and scale
it up to the DEM ground scale, and then subtract that areoid data from the model produced by point2dem.
That resultant model can then be directly compared to the MOLA Topography data.

A.3.2 Post Spacing

Recall that stereo creates a pointcloud file as its output that you need to use point2dem on to create a
GeoTIFF that you can use in other tools. The pointcloud file is the result of taking the image-to-image
matches (which were created from the kernel sizes you specified, and the subpixel versions of the same, if
used) and projecting them out into space from the cameras, and arriving at a point in real world coordinates.
Since stereo does this for every pixel in the input images, the default value that point2dem uses (if you
don’t specify anything explicitly) is: the input image scale, because there’s an ‘answer’ in the pointcloud
file for each pixel in the original image.

However, as you may suspect, this is probably not the best value to use, because there really isn’t that
much ‘information’ in the data. The true ‘resolution’ of the output model is dependent on a whole bunch of
things (like the kernel sizes you choose to use) but also can vary from place to place in the image depending
on the texture.

The general ‘rule of thumb’ is to produce a terrain model that has a post spacing of about 3x the input
image ground scale. This is based on the fact that it is nearly impossible to uniquely identify a single pixel
correspondence between two images, but a 3x3 patch of pixels provides improved matching reliability. As
you go to numerically larger post-spacings on output, you’re averaging more point data (that is probably
spatially correlated anyway) together.

So you can either use the --dem-spacing argument to point2dem to do that directly, or feel free to use
your favorite averaging algorithm to reduce the point2dem-created model down to the scale you want.

If you attempt to derive science results from an ASP-produced terrain model with the default DEM spacing,
expect serious questions from reviewers.

Table A.3: Command-line options for point2dem

Options Description
--nodata-value float(=min-z) Explicitly set the default missing pixel value. By default,

the minimum z value in the model is used.
--use-alpha Create images that have an alpha channel
--normalized|-n Also write a normalized version of the DEM (for debugging)
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--orthoimage texture-file Write an orthoimage based on the texture file given as an
argument to this command line option

--errorimage Write an additional image whose values represent the trian-
gulation error in meters

--fsaa float(=3) Oversampling amount to perform antialiasing.
--output-prefix|-o output-prefix Specify the output prefix
--output-filetype|-t type(=tif) Specify the output file type
--x-offset float(=0) Add a horizontal offset to the DEM
--y-offset float(=0) Add a horizontal offset to the DEM
--z-offset float(=0) Add a vertical offset to the DEM
--rotation-order order(=xyz) Set the order of an euler angle rotation applied to the 3D

points prior to DEM rasterization
--phi-rotation float(=0) Set a rotation angle phi
--omega-rotation float(=0) Set a rotation angle omega
--kappa-rotation float(=0) Set a rotation angle kappa
--t_srs string Target spatial reference set. This mimicks the GDAL option

used on their tools.
--reference-spheroid|-r moon|mars Set a reference surface to a hard coded value. This will

override manually set datum information.
--semi-major-axis float(=0) Set the dimensions of the datum in meters
--semi-minor-axis float(=0) Set the dimensions of the datum in meters
--sinusoidal Save using a sinusoidal projection
--mercator Save using a Mercator projection
--transverse-mercator Save using transverse Mercator projection
--orthographic Save using an orthographic projection
--stereographic Save using a stereographic projection
--lambert-azimuthal Save using a Lambert azimuthal projection
--utm zone Save using a UTM projection with the given zone
--proj-lat float The center of projection latitude (if applicable)
--proj-lon float The center of projection longitude (if applicable)
--proj-scale float The projection scale (if applicable)
--dem-spacing|-s float(=0) Set the DEM post size (if this value is 0, the post spacing

size is computed for you)
--threads int(=0) Select the number of processors (threads) to use.
--no-bigtiff Tell GDAL to not create bigtiffs.
--tif-compress None|LZW|Deflate|Packbits TIFF Compression method.
--cache-dir directory(=/tmp) Folder for temporary files. Normally don’t need to change.
--help|-h Display this table

A.4 point2mesh

Produces a mesh surface that can be visualized in osgviewer, which is a standard 3D viewing application
that is part of the open source OpenSceneGraph package. 1

Unlike DEMs, The 3D mesh is not meant to be used as a finished scientific product. Rather, it can be used
for fast visualization to create a 3D view of the generated terrain.

1
The full OpenSceneGraph package is not bundled with the Stereo Pipeline, but the osgviewer program is. You can

download and install this package separately from http://www.openscenegraph.org/.
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The point2mesh program requires a point cloud file and an optional texture file (output-prefix -PC.tif
and normally output-prefix -L.tif). When a texture file is not provided, a 1D texture is applied in the
local Z direction that produces a rough rendition of a contour map. In either case, point2mesh will produce
a output-prefix.ive file that contains the 3D model in OpenSceneGraph format.

Two options for osgviewer bear pointing out: the -l flag indicates that synthetic lighting should be
activated for the model, which can make it easier to see fine detail in the model by providing some real-
time, interactive hillshading. The -s flag sets the sub-sampling rate, and dictates the degree to which the
3D model should be simplified. For 3D reconstructions, this can be essential for producing a model that
can fit in memory. The default value is 10, meaning every 10th point is used in the X and Y directions. In
other words that mean only 1/102 of the points are being used to create the model. Adjust this sampling
rate according to how much detail is desired, but remember that large models will impact the frame rate
of the 3D viewer and affect performance.

Example:
point2mesh -l -s 2 output-prefix -PC.tif output-prefix -L.tif

To view the resulting output-prefix.ive file use osgviewer.

Fullscreen:
> osgviewer output-prefix.ive

or Windowed:
> osgviewer output-prefix.ive --window 50 50 1000 1000

Inside osgviewer, the keys L, T, and W can be used to toggle on and off lighting, texture, and wireframe
modes. The left, middle, and right mouse buttons control rotation, panning, and zooming of the model.

Table A.4: Command-line options for point2mesh

Options Description
--help|-h Display this help
--simplify-mesh float Run OSG Simplifier on mesh, 1.0 = 100%
--smooth-mesh Run OSG Smoother on mesh
--use-delaunay Uses the delaunay triangulator to create a surface from the

point cloud. This is not recommended for point clouds with
noise issues.

--step|-s integer(=10) Sampling step size for mesher.
--input-file pointcloud-file Explicitly specify the input file
--texture-file texture-file Explicitly specify the texture file
--output-prefix|-o output-prefix Specify the output prefix
--output-filetype|-t type(=ive) Specify the output file type
--enable-lighting|-l Enables shades and light on the mesh
--center Center the model around the origin. Use this option if you

are experiencing numerical precision issues.
--rotation-order order(=xyz) Set the order of an euler angle rotation applied to the 3D

points prior to DEM rasterization
--phi-rotation float(=0) Set a rotation angle phi
--omega-rotation float(=0) Set a rotation angle omega
--kappa-rotation float(=0) Set a rotation angle kappa
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A.5 orbitviz

Produces a Google Earth Keyhole Markup Language (KML) file useful for visualizing camera position. The
input for this tool is one or more *.cub files.

Table A.5: Command-line options for orbitviz

Options Description
--help|-h Display this help
--output|-o filename(=orbit.kml) Specifies the output file name
--scale|-s float(=1) Scale the size of the coordinate axes by this amount. Ex: To

scale axis sizes up to earth size, use 3.66
--use_path_to_dae_model|-u fullpath Use this dae model to represent camera location. Google

Sketch up can create these.

Figure A.1: Example of a KML visualization produced with orbitviz depicting camera locations for the
Apollo 15 Metric Camera during orbit 33 of the Apollo command module.
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A.6 cam2map4stereo.py

This program takes similar arguments as the ISIS3 cam2map program, but takes two input images. With
no arguments, the program determines the minimum overlap of the two images, and the worst common
resolution, and then map-projects the two images to this identical area and resolution.

The detailed reasons for doing this, and a manual step-by-step walkthrough of what cam2map4stereo.py
does is provided in the disucssion on aligning images on page 18.

The cam2map4stereo.py is also useful for selecting a subsection and/or reduced resolution portion of the
full image. You can inspect a raw camera geometry image in qview after you have run spiceinit on it,
select the latitude and longitude ranges, and then use cam2map4stereo.py’s --lat, --lon, and optionally
--resolution options to pick out just the part you want.

Use the --dry-run option the first few times to get an idea of what cam2map4stereo.py does for you.

Table A.6: Command-line options for cam2map4stereo.py

Options Description
--help|-h Display this help
--manual Read the manual.
--map=MAP |-m MAP The mapfile to use for cam2map.
--pixres=PIXRES |-p PIXRES The pixel resolution mode to use for cam2map.
--resolution=RESOLUTION |-r RESOLUTION Resolution of the final map for cam2map.
--interp=INTERP |-i INTERP Pixel interpolation scheme for cam2map.
--lat=LAT |-a LAT Latitude range for cam2map, where LAT is of the form

min:max. So to specify a latitude range between -5 and 10
degrees, it would look like --lat=-5:10.

--lon=LON |-o LON Longitude range for cam2map, where LON is of the form
min:max. So to specify a longitude range between 45 and
47 degrees, it would look like --lon=40:47.

--dry-run|-n Make calculations, and print the cam2map command that
would be executed, but don’t actually run it.

--suffix|-s Suffix that gets inserted in the output file names, defaults to
‘map’.
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The stereo.default File

The stereo.default file contains configuration parameters that the stereo program uses to process images.
The stereo.default file is loaded from the current working directory when you run stereo unless you
specify a different file using the -s option. Run stereo --help for more information. The extension is not
important for this file.

Below we will walk through the contents of the stereo.default and discuss its various parameters. If you
want to start with a clean slate, you can copy the stereo.default.example file that is included in the top
level of the Stereo Pipeline software distribution.

Note: The parameters that begin with ‘DO_*’ are true/false options, when set to ‘1’ they are ‘on’ or ‘true,’
and if set to ‘0’ they are ‘off’ or ‘false.’ All parameters below have their default values listed after the
parameter name.

B.1 Preprocessing

alignment-method (default = none)
When alignment-method is set to homography, stereo will attempt to pre-align the images by
automatically detecting tie-points between images using a feature based image matching technique.
Tiepoints are stored in a *.match file that is used to compute a linear homography transformation of
the right image so that it closely matches the left image. Note: the user may exercise more control
over this process by using the ipfind and ipmatch tools.

When alignment-method is set to epipolar, stereo will apply a 3D transform to both images so
that their epipolar lines will be horizontal. This speeds of stereo correlation as it greatly reduces the
area required for searching.

Epipolar alignment is only available when performing stereo matches using the pinhole stereo session

(i.e. when using stereo -t pinhole), and cannot be used when processing ISIS images at this time.

force-use-entire-range (default = false)
By default, the Stereo Pipeline will normalize ISIS images so that their maximum and minimum
channel values are ±2 standard deviations from a mean value of 1.0. Use this option if you want to
disable normalization in the stereo pipeline and force the raw values to pass directly to the stereo
correlations algorithms.

For example, if ISIS’s histeq has already been used to normalize the images, then use this option to
disable normalization as a (redundant) pre-processing step.
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individual-normalize (default = false)
By default, the maximum and minimum valid pixel value is determined by looking at both images.
Normalized with the same “global” min and max guarantees that the two images will retain their
brightness and contrast relative to each other.

This option forces each image to be normalized to its own maximum and minimum valid pixel value.
This is useful in the event that images have different and non-overlapping dynamic ranges. You can
sometimes tell when this option is needed: after a failed stereo attempt one of the rectified images
(*-L.tif and *-R.tif) may be either mostly white or black. Activating this option may correct this
problem.

Note: Photometric calibration and image normalization are steps that can and should be carried out
beforehand using ISIS’s own utilities. This provides the best possible input to the stereo pipeline and
yields the best stereo matching results.

B.2 Correlation

prefilter-mode (= 0,1,2,3) (default = 2)
This selects the pre-processing filter to be used to prepare imagery before it is fed to the initialization
stage of the pipeline.

0 - None

1 - Subtracted Mean - This takes a preferrably large gaussian kernel and subtracts its value from
the input image. This effectively reduces low frequency content in the image. The result is
correlation that is immune to translations in image intensity.

2 - LoG Filter - Takes the Laplacian of Gaussian of the image, This provides some immunity to
differences in lighting conditions between a pair of images by isolating and matching on blob
features in the image.

3 - Sign of LoG - Not recommended for using. It was meant for an experimental XOR cost metric
for correlation. This will still produce results. Though the results may not be as nice as one
would like.

For all of the modes above, the size of the filter kernel is determined by the prefilter-kernel-width
parameter below.

The choice of pre-processing filter must be made with thought to the cost function being used (see
cost-mode, below). LoG filter preprocessing provides good immunity to variations in lighting condi-
tions and is usually the recommended choice.

prefilter-kernel-width (= float) (default = 1.4)
This defines the diameter of the Gaussian convolution kernel used for the preprocessing modes 1 and
2 above. A value of 1.4 works well for LoG and 25-30 works well for Subtracted Mean.

corr-seed-mode (=0,1) (default = 1)
This parameter selects a strategy for how to solve for the integer correlation. It takes an integer value
to index which strategy to take.

0 - None - Meaning, don’t calculate a low resolution variant of the disparity image. This produces
a strategy that is the same as the old style ASP.
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1 - Low-Res Disparity - Calculate a low resolution version of the disparity from the L and R sub
pictures. The results of this disparity will be used to narrow down the search range of individual
tiles in the native resolution disparity image.
This is a useful option despite the fact that our integer correlation implementation does indeed
use a pyramid approach. Our implementation can’t search infinitely into lower resolutions due to
its independent and tiled nature. This low resolution disparity seed is a good hybrid approach.

2 - Not implemented yet - It would be nice to have local affine fittings for each tile. Anyone
interested in implementing?

For large images, bigger than MOC-NA, using the low resolution disparity seed is a definitive plus.
Smaller images such as Cassini ISS or MER images should just shut this option off to save storage
space.

corr-sub-seed-percent (= float) (default=.25)
When using corr-seed-mode 1, the solved for or user provided search range is padded by a percent-
age. The user can customize this value themselves with this option.

cost-mode (= 0,1,2) (default = 2)

This defines the cost function used during integer correlation. Squared difference is the fastest cost
function. However it comes at the price of not being resilient against noise. Absolute difference is
the next fastest and is a better choice. Normalized cross correlation is the slowest but is designed
to be more robust against image intensity changes and slight lighting differences. Normalized cross
correlation is about 2x slower than absolute difference and about 3x slower than squared difference.

0 - absolute difference
1 - squared difference
2 - normalized cross correlation

corr-kernel (= integer integer) (default = 25 25)
These option determine the size (in pixels) of the correlation kernel used in the initialization step. A
different size can be set in the horizontal and vertical directions, but square correlation kernels are
almost always used in practice.

corr-search (= integer integer integer integer)
These parameters determine the size of the initial correlation search range. The ideal search range
depends on a variety of factors ranging from how the images were pre-aligned to the resolution and
range of disparities seen in a given image pair. This search range is successively refined during
initialization, so it is often acceptable to set a large search range that is guaranteed to contain all of
the disparities in a given image. However, setting tighter bounds on the search can sometimes reduce
the number of erroneous matches, so it can be advantageous to tune the search range for a particular
data set.
Commenting out these settings will cause stereo to make an attempt to guess its search range using
interest points.
The order of the four integers define the minimum horizontal and vertical disparity and then the
maximum horizontal and vertical disparity.

xcorr-threshold (= integer) (default = 2)

Integer correlation to a limited sense performs a correlation forward and backwards to double check
its result. This is one of the first filtering steps to insure that we have indeed converged to a global
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minimum for an individual pixel. The xcorr-threshold parameter defines an agreement threshold
in pixels between the forward and backward result.

Optionally, this parameter can be set to a negative number. This will signal the correlator to only
use the forward correlation result. This will drastically improve speed at the cost of additional noise.

B.3 Subpixel Refinement

subpixel-mode (= 0,1,2,3) (default = 2)
This parameter selects the subpixel correlation method. These algorithms are arranged in order of
decreasing speed and increasing quality. Parabola subpixel is very fast but will produce results that
are only slightly more accurate than those produced by the initialization step. Bayes EM (mode 2)
is very slow but offers the best quality. When tuning stereo.default parameters, it is expedient to
start out using parabola subpixel as a “draft mode.” When the results are looking good with parabola
subpixel, then they will look even better with subpixel mode 2.

0 - no subpixel refinement
1 - parabola fitting
2 - affine adaptive window, Bayes EM weighting
3 - affine adaptive window, Bayes EM with Gamma Noise Distribution (experimental)

For a visual comparison of the quality of these subpixel modes, refer back to Chapter:4.

subpixel-kernel (= integer integer) (default = 35 35) Specify the size of the horizontal and vertical size
(in pixels) of the subpixel correlation kernel. It is advantageous to keep this small for parabola fitting
in order to resolve finer details. However for the Bayes EM methods, keep the kernel slightly larger.
Those methods weight the kernel with a gaussian distribution, thus the effective area is small than
the kernel size defined here.

B.4 Filtering

rm-half-kernel (= integer integer) (default = 5 5)
This setting adjusts the behavior of an outlier rejection scheme that “erodes” isolated regions of pixels
in the disparity map that are in disagreement with their neighbors.

The two parameters determine the size of the half kernel that is used to perform the automatic removal
of low confidence pixels. A 5× 5 half kernel would result in an 11× 11 kernel with 121 pixels in it.

rm-min-matches (= integer) (default = 60)
This parameter sets the percentage of neighboring disparity values that must fall within the inlier
threshold in order for a given disparity value to be retained.

rm-threshold (= integer) (default = 3)
This parameter sets the inlier threshold for the outlier rejection scheme. This option works in con-
junction with RM_MIN_MATCHES above. A disparity value is rejected if it differs by more than
RM_THRESHOLD disparity values from RM_MIN_MATCHES percent of pixels in the region being
considered.
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rm-clean-passes (= integer) (default = 1)
Select the number of outlier removal passes that are carried out. Each pass will erode pixels that do
not match their neighbors. One pass is usually sufficient.

disable-fill-holes (default = false)

Normally ASP will try to fill holes in the dispartiy map (caused by poor matching) with an inpainting
algorithm. Inpainting is a convolution method that takes the values at the edges of holes and spreads
those values inward.
Use this flag inorder to disable the filling of holes to leave only true calculated results in the output.
Note: you can always use the good pixel mask image (*-GoodPixelMap.TIF) to determine which
pixels represent “real” data matched by the stereo correlator, and which pixels represent interpolated
data produced by inpainting.

fill-holes=max-size (= integer) (default = 100,000)
This defines the maximum area of a hole that the inpainting technique should attempt. Default is
100,000 pixels.

B.5 Post-Processing

near-universe-radius (= float) (default = 0.0)

far-universe-radius (= float) (default = 0.0)
These parameters can be used to filter out triangulated points in the 3D point cloud by setting an
near and far radius value from origin of the point cloud’s coordinate system, [0,0,0]. For most ISIS
cameras, the origin is the center of the body (e.g. the Moon or Mars), and is part of a body-fixed
Cartesian coordinate system that rotates with the planet.
These settings are most useful for other stereo session types (e.g. pinhole), where the origin of the
coordinate system is often one of the cameras in a stereo pair. In this case, these parameters can be
used to reject pixels that are too close or too far from the camera system.

universe-center (default = none)
Defines the origin to use when filtering the output point cloud using the above near and far radius
options. The available options are:

None - Disable filtering.
Camera - Filter in terms of radii from the left camera’s center.
Zero - Filter in terms of radii from the target’s center.
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Guide to Output Files

The stereo tool generates a variety of intermediate files that are useful for debugging. These are listed
below, along with brief descriptions about the contents of each file. Note that the prefix of the filename for
all of these files is dictated by the final command line argument to stereo. Run stereo --help for details.

*.vwip - image feature files
If alignment-method homography is enabled, the stereo pipeline will automatically search for image
features to use for tie-points. Raw image features are stored in *.vwip files; one per input image. For
example, if your images are left.cub and right.cub you’ll get left.vwip and right.vwip. Note:
these files can also be generated by hand (and with finer grained control over detection algorithm
options) using the ipfind utility.

*.match - image to image tie-points
The match file lists a select group of unique points out of the previous .vwip files that have been
identified and matched in a pair of images. For example, if your images are left.cub and right.cub
you’ll get a left__right.match file.

The .vwip and .match files are meant to serve as cached tie-point information, and they help speed
up the pre-processing phase of the stereo pipeline: if these files exist then the stereo program will
skip over the interest point alignment stage and instead use the cached tie-points contained in the
*.match files. In the rare case that one of these files did get corrupted or your input images have
changed, you may want to delete these files and allow stereo to regenerate them automatically. This
is also recommended if you have upgraded the Stereo Pipeline software.

*-L.tif - rectified left input image
The left input image of the stereo pair, saved after the pre-processing step. This image may be
normalized, but should otherwise be identical to the original left input image.

*-R.tif - rectified right input image
Right input image of the stereo pair, after the pre-processing step. This image may be normalized
and possibly translated, scaled, and/or rotated to roughly align it with the left image, but should
otherwise be identical to the original right input image.

*-lMask.tif - mask for left rectified image

*-rMask.tif - mask for right rectified image
These files contain binary masks for the input images. These are used throughout the stereo process
to mask out pixels where there is no input data.
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*-align.exr - pre-alignment matrix
The 3 × 3 affine transformation matrix that was used to warp the right image to roughly align
with the left image. This file is only generated if alignment-method homography is enabled in the
stereo.default file.

*-D.tif - disparity map after the disparity map initialization phase
This is the disparity map generated by the correlation algorithm in the initialization phase. It contains
integer values of disparity that are used to seed the subsequent sub-pixel correlation phase. It is largely
unfiltered, and may contain some bad matches.
Disparity map files are stored in OpenEXR format as 3-channel, 32-bit floating point images. (Channel
0 = horizontal disparity, Channel 1 = vertical disparity, and Channel 2 = good pixel mask)

*-RD.tif - disparity map after sub-pixel correlation
This file contains the disparity map after sub-pixel refinement. Pixel values now have sub-pixel
precision, and some outliers have been rejected by the sub-pixel matching process.

*-F-corrected.tif - intermediate data product
Only created when alignment-method homography is on. This is *-F.tif with effects of interest
point alignment removed.

*-F.tif - filtered disparity map
The filtered, sub-pixel disparity map with outliers removed (and holes filled with the inpainting
algorithm if FILL_HOLES is on). This is the final version of the disparity map.

*-GoodPixelMap.tif - map of good pixels
An image showing which pixels were matched by the stereo correlator (gray pixels), and which were
filled in by the hole filling algorithm (red pixels).

*-PC.tif - point cloud image
The point cloud image is generated by the triangulation phase of the Stereo Pipeline. It contains 3D
locations for each valid pixel; stored as a 64-bit, 3-channel TIFF, with coordinates in a body-fixed
planetocentric coordinate system. Each pixel in the point cloud image corresponds to a pixel in the
left input image.
Note: it is unlikely that your usual TIFF viewing programs will visualize this file properly. This file
should be considered a ‘data’ file, not an ‘image’ file. Other programs in the Stereo Pipeline, such as
point2mesh and point2dem will convert the contents of this file to more easily visualized formats.

*-stereo.default - backup of the stereo pipeline settings file
This is a copy of the stereo.default file used by stereo. It is stored alongside the output products
as a record of the settings that were used for this particular stereo processing task.
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Modifying SURF to output VW match files

SURF v1.0.9 is a fast a relatively robust interest point algorithm. It is not open source, but it is freely
available for academic uses at http://www.vision.ee.ethz.ch/~surf/. This software is currently only
available for Windows and Linux 32 bit.

SURF creates it own results files. What is available online was probably only meant for demonstrations.
What we’ve done is created a patch that allows the SURF match utility, match.ln, to create Vision
Workbench match files. The patch is available as the surf_match.patch in the examples/ directory of the
Stereo Pipeline distribution.

D.1 How to apply and compile

First move to the directory containing your copy of the SURF v1.0.9 code. Then copy surf_match.patch
to the active directory. At this point you are ready to start running the following commands.

> patch < surf_match.patch
> make match.ln

Note:

If you are unfortunate enough to run into an error such as g++-4.0.2: Command

not found, don’t worry. Edit Makefile at line 10 and 11 to refer to g++ instead of
g++-4.0.2.

Also since you’ve incurred that error, you’ll probably need to add an include
to <stdlib.h> in imload.cpp in the same directory. This all stems from differences
in using a newer version of g++.

D.2 Example of using SURF

For this example it is assumed you have a directory containing two images named m1000254.png and
r0901059.png like in the example found in Section 5.1.1.

SURF code only works with images in the grayscale format PGM. A free Linux utility to convert the images
is mogrify. That utility is part of the package ImageMagick and is likely to be available in most package
managers.
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Below are the commands to take an input of PNG files, process them with SURF, and then finally create
a match file which can be used by isis_adjust.

> mogrify -format pgm m1000254.png r0901059.png
> surf.ln -i m1000254.pgm -o m1000254.surf
> surf.ln -i r0901059.pgm -o r0901059.surf
> match.ln -k1 m1000254.surf -k2 r0901059.surf \

-im1 m1000254.pgm -im2 r0901059.pgm \
-o out.pgm -m m1000254__r0901059.match

> rm m1000254.pgm r0901059.pgm *.surf

It is important to note that though SURF is very good at performing matches it
does not perform a step of RANSAC with its output. There may be a couple of
outliers.
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